On the Power of Coercion Abstraction

Julien Cretin Didier Rémy

INRIA

January 26, 2012

1/36

Why study coercions?

People have often used similar mechanisms, called coercions or
type conversions, to explain non-trivial type system features.

2/36

Why study coercions?

People have often used similar mechanisms, called coercions or
type conversions, to explain non-trivial type system features.

These techniques have a lot in common, but also differ in

some details.
Can we understand them as several instances of the same

framework and use it to more easily design new type system
features?

2/36

Why study coercions?

People have often used similar mechanisms, called coercions or
type conversions, to explain non-trivial type system features.

These techniques have a lot in common, but also differ in
some details.

Can we understand them as several instances of the same
framework and use it to more easily design new type system
features?

In this work, we restrict to erasable coercions (i.e. coercions
without computational content).

2/36

Intuition: Goal

Let's design a type system to type the following untyped
lambda term:
(Ax.x x) (Ax.x)

We can graphically represent it bottom-up like that:

Q.

3/36

Intuition: Typing rules

The type system necessarily gives typing rules for the untyped
constructs:

» variable: x

» abstraction: Ax.M

» application: M N

We choose simple types for illustration.

4/36

Intuition: Graphical typing rules

We can annotate the graphical untyped constructs to obtain
their graphical typing rule:

Fr--M: r—=o Fr=N:r7
Fr'-=MN: o

5/36

Intuition: Graphical typing rules

We can annotate the graphical untyped constructs to obtain
their graphical typing rule:

(x:7)FM: o
Fr=AXx:7)M: 17—=0

5/36

Intuition: Graphical typing rules

We can annotate the graphical untyped constructs to obtain
their graphical typing rule:

M, (x:7),T Fx: 7

M, (x:7), rchr

5/36

Intuition: Simply-typed lambda calculus

6/36

Intuition: Simply-typed lambda calculus

!

!

Lo

M (x: 7')\

y

T —0

6/36

Intuition: Simply-typed lambda calculus

T —0

6/36

Intuition: Simply-typed lambda calculus

!

!

Lo

M(x:7)

X T

r

g

y

T —0

6/36

Intuition: Simply-typed lambda calculus

[]

Nx:7)|p—o M(x:7)|p
@

M(x:7)|o

X T)D

[T7T— 0

6/36

Intuition: Simply-typed lambda calculus

@F M(x: T)@FT

Nx:7)|p—o M(x:7)|p
@

M(x:7)|o

X T)D

[T7T— 0

6/36

Intuition: Simply-typed lambda calculus

@F M(x: T)@FT

Nx:7)|T7T—=0 M(x:7)| 7
@

M(x:7)|o

[T7T— 0

6/36

Intuition: Simply-typed lambda calculus

6/36

Intuition: Simply-typed lambda calculus

6/36

Intuition: Simply-typed lambda calculus

6/36

Intuition: Type system features

Terms should be allowed to have several types.

7/36

Intuition: Type system features

Terms should be allowed to have several types.

Several type system features can represent multiple types:
» intersection types,
» polymorphism,
» subtyping, or
» dependent types.

We choose polymorphism for illustration.

7/36

Intuition: V-elim

Polymorphism elimination can be
seen as a coercion (which is an
erasable type conversion):

Mx: VYa.a— «

MFx7:7>71

With 7 £Va.a = aand " £ T, (x : 7).

8/36

Intuition: V-intro

Polymorphism introduction may extend the environment: so
coercions may in fact change the whole typing, not just types!

Type system features are typing conversions.
0
X —C)D

Untyped term:

AX. X

9/36

Intuition: V-intro

Polymorphism introduction may extend the environment: so
coercions may in fact change the whole typing, not just types!

Type system features are typing conversions.
Typing derivation:
Mo, (x:a)kFx:a
NakFAMx:a)x: a—a«
FFAaAx:a)x: Va.a—a

We can now pass this term to (Ax.x x) as wanted.

9/36

Coercions

A one-node coercion P, drawn in red, is a one-node erasable
retyping context.

M _ NMAEFEM: 7 here M
> retyping. where
rajfr YPIE T PIM - o

and P[M] are explicitly-typed
version of the same implicit term.

10/36

Coercions

A one-node coercion P, drawn in red, is a one-node erasable
retyping context.

M _ NMAEFEM: 7 here M
> retyping. where
rajfr YPIE T PIM - o

and P[M] are explicitly-typed
version of the same implicit term.

» erasable: P doesn’t modify or block
the reduction. It is purely static.

10/36

Coercions

A coercion G is a sequence of one-node coercions.

We fill the hole with a diamond:

G=NNA3 O (a— P)

11/36

Erasability

The erasing function |-| keeps the blue parts and removes
both the annotations and the red nodes.

12/36

Erasability

The erasing function |-| keeps the blue parts and removes
both the annotations and the red nodes.

12/36

Erasability

The erasing function |-| keeps the blue parts and removes
both the annotations and the red nodes.

12/36

Bisimulation

The reduction is labelled:

» [-reduction involves only blue nodes

» -reduction involves at least one red node

13/36

Bisimulation

The reduction is labelled:

» [-reduction involves only blue nodes

» -reduction involves at least one red node

We want a bisimulation up to ¢-steps:

M M~~~ N
M| s [N] L

Forward simulation
The forward simulation tells that coercions do not contribute
to computation.

13/36

Bisimulation
The reduction is labelled:
» [-reduction involves only blue nodes

» -reduction involves at least one red node

We want a bisimulation up to ¢-steps:
*

u‘ ‘u L-\ /1) ul 1
| M| s | N LM] M| ~~— LT\IJ
Forward simulation Backward simulation

The forward simulation tells that coercions do not contribute
to computation.

The backward simulation tells that coercions cannot block the
computation. (Thus, values remain values after erasure.)

13/36

Coercion judgments

We give the following judgment for coercions:

Fr~G: 7o o

AT

14 /36

System F

T,0 =T =0 |a|Var
M,N = x| Ax:7)M|MN
| AaM | Mt

G:= NG| GT
Polymorphism: (Aa M) 1 ~~, M[a < 7]

M M

Na|rT | YVa.o

| Va.r M| ola 7]

15/36

System F,

T,0 =T =0 |a|VYar
M,N = x| Ax:7)M|MN
| AaM | M7 | G(M)
G = NG| GT | G(Gy)

Coercion application: (we want G(M) ~* G[) « M])

M 0
|7 T
if
M|o rle

15/36

System F,

T,0 =T =0 |a|VYar
M,N = x| Ax:7)M|MN
| AaM | M1 | G(M)
G := NG| G| G(Gy)

<>T
Reflexivity: O™ (M) ~~, M

15/36

System F,

T,0 =T =0 |a|VYar
M,N = x| Ax:7)M|MN
| AaM | M1 | G(M)
G = NG| GT | G(G)

| 07 | G5 Gy

Arrow congruence (subtyping):
(G i G))(A\(x : 1) M) ~, M(x = 77) Go(M[x < Gi(x)])

Y T — T2 7{ T To

Gl N G2 if Gl and G2
FlT{—H’é r| m FJ/Té

15/36

System F,
T,0 =T =0 |a|VYar
M,N = x| Ax:7)M|MN
| AaM | M1 | G(M)
G := NG| G| G(Gy)

<>T | G1l> Gg ‘ DiStZi;a

It permutes Aav and A\(x : 7)

Dist™™, ,(Aa A(x : 7) M) ~, A(x : 7) Aa M
? Va.T = o
Dist’;

T—0

FlT—>Va.0

with o ¢ ftv(7)

15/36

System F,
T,0 =T =0 |a|VYar
M,N = x| Ax:7)M|MN
| AaM | M1 | G(M)
G = NG| Gt | G(Gy)
| 07 | Gt > G, | Dist’;

T—0

We now have described F, (using an explicit variant of
Mitchell's presentation).

F, models subtyping which is at the essence of F.., but it is
not sufficient to model F.. itself.

We add coercion abstraction for that purpose.

15/36

System F,

T,0 =T —=o0|a|Var| p=>7T pr=Tb>O
M,N = x| Ax:7)M|MN
| AaM | Mt | G(M)
G := NG| G| G(Gy)

07 | G5 G, | Dist]®,

15/36

System F,

T,0 i

M,N ::

G

T—ol|la|Var| o=>71

x| AMx:1T)M|MN

pi=Tb>O

ANM | Mt | GIM) | Nc:p)M | M{G}
NG | GT | Gi(G) | Mc:¢) G | G{G'}

o7 | G1L>G2 ‘ Dist

Vo.
TS0

15/36

System F,

7,0 i=7T—0|a|Var| og=>T prI=T>O
M,N = x| Ax:7)M|MN
| AaM | M1 | GIM) | N(c:p) M | M{G}
G:= NG| Gt | G(G) | Mc:¢)G | G{G'}

<>T | G1l> Gg ‘ Distva'

T—0

Coercion abstraction: (A(c : ¢) M){G} ~~, M[c < G]

M M
N(c:p) | T rfe=r1
withTH G : ¢
e
r{fe=r7 r{ =

15/36

System F,
T,0 =T —=o0|a|Var| p=>7T
M,N = x| Ax:7)M|MN
ANeM | Mt | GIM) | N(c
N G | GT | Gi(G2) | N(c
|

G

<>T | G1l> G2 ‘ Distva'

T—0

Coercion variable:

pi=Tb>O
) M| M{G}
9) G | G{G'}

(o

15/36

System F,

T,0 =T —=o0|a|Var| p=>7T pu=Tb>O
M,N = x| Ax:7)M|MN
| AaM | M1 | GIM) | N(c:p)M | M{G}
G = NG| GT| G(G) | NMc:y)G | G{G'}

0" | Gt > G, | Dist’™_ | c | Dist?

T—0 T—0

It permutes A(c : ¢) and A(x : 7)
Dist?, =, (A(c: ©) A(x : 7) M) ~», A(x : 7) ANc :) M

Jg@i(T—Mf)

=
Dist?=,

rir—(e=o0)

15/36

Properties of F,

F, is well-behaved: it satisfies preservation, progress,
confluence, and normalization.

16 /36

Properties of F,

F, is well-behaved: it satisfies preservation, progress,
confluence, and normalization.

However, it is not a coercion language: it obeys the forward
simulation but not the backward simulation.

The backward simulation is necessary for values to correspond
before and after erasure: types should not block the
computation.

16 /36

Losing backward simulation

17/36

Losing backward simulation

17/36

Losing backward simulation

Myr—r M|

17/36

Losing backward simulation

Myr—r M|

17/36

Losing backward simulation

Mo, (x:a)|a M2l (c:Va.a = avT—T)

rNMa.a—savr—=7)=>71

17/36

A default solution

One solution is to use weak reduction and value restriction on
coercion abstraction.

However, it delays error detection. We could type any pure
lambda term by abstracting over an incoherent set of
coercions like U (U — U) and (U — U) > U.

18/36

System FP

MLF and F_. have some coercion abstraction because of
bounded polymorphism.

19/36

System FP

MLF and F_. have some coercion abstraction because of
bounded polymorphism.

F.. MLF
Na < T)M Na > 1)M

19/36

System FP

MLF and F_. have some coercion abstraction because of
bounded polymorphism.

.. MLF
Na < T)M Na > 1)M
N Nc:avt)M | AaNc:T>a)M

19/36

System FP

MLF and F_. have some coercion abstraction because of
bounded polymorphism.

.. MLF

Na < T)M Na > 1)M
N Nc:avt)M | AaNc:T>a)M
Navc:T) M NMa<c:T) M

From F,, we replace unrestricted coercion abstraction with
these two features and call the result FP. We gain backward
simulation and the previous example is ill-formed.

FP is a coercion language (soundness, normalization,
confluence, bisimulation with its erasure).

19/36

Result: FP subsumes F.., F,, and MLF

Languages
FL L[

Features

» V= is simple polymorphism

20/36

Result: FP subsumes F.., F,, and MLF

Languages
FIRL | |
V= v
2 %

Features

» V= is simple polymorphism
» & is subtyping i.e. the n-expansion for arrow

20/36

Result: FP subsumes F.., F,, and MLF

Languages
FIR [MLF] |
o VI VIV V
s 5 v
8 V= v

» V= is simple polymorphism
» 2 is subtyping i.e. the n-expansion for arrow
» V= is lower bounded polymorphism (includes V=)

20/36

Result: FP subsumes F_.,

F

and MLF

n
Languages
F\F”MLF\FC H
o VIV V]V v
s 5 Vi v
5w v
V= v

= is simple polymorphism
is subtyping i.e. the n-expansion for arrow

= is lower bounded polymorphism (includes ¥V=)
= is upper bounded polymorphism (includes V=)

20/36

Result: FP subsumes F.., F,, and MLF

Languages
F IR [MLF]FE |

o VIVv[v] v [V

s 5 Vi v

8V v
V= v

» V= is simple polymorphism

» 2 is subtyping i.e. the n-expansion for arrow

» V= is lower bounded polymorphism (includes V=)

» V= is upper bounded polymorphism (includes V=)
FX., the combination of V< and -5, also contains deep
instantiation and distributivity which are absent from F_..

20/36

Result: FP subsumes F.., F,, and MLF

Languages
A

o V-IVIv] v [v]V
ERR y v v
i‘%v- v Vi

V< VIRV

» V= is simple polymorphism

» 2 is subtyping i.e. the n-expansion for arrow

» V= is lower bounded polymorphism (includes V=)
» V= is upper bounded polymorphism (includes V=)

FX., the combination of V< and -5, also contains deep
instantiation and distributivity which are absent from F_..

20/36

Future work

» See if other type system features can be expressed as
coercions:
> recursive types
> intersection types
» existential types
» linear types
» type operators
» dependent types, etc.

21/36

Future work

» See if other type system features can be expressed as
coercions:
> recursive types
> intersection types
» existential types
» linear types
» type operators
» dependent types, etc.

» A coercion abstraction less restricted than bounded
polymorphism.

21/36

Future work

» See if other type system features can be expressed as
coercions:
> recursive types
> intersection types
» existential types
» linear types
» type operators
» dependent types, etc.

» A coercion abstraction less restricted than bounded
polymorphism.

» Looking at non erasable coercions.

21/36

Future work

» See if other type system features can be expressed as
coercions:
> recursive types
> intersection types
» existential types
» linear types
» type operators
» dependent types, etc.
» A coercion abstraction less restricted than bounded
polymorphism.

» Looking at non erasable coercions.

Thank youl

21/36

Extra slides

Extra slides

22/36

Push

Mo, (x:a)|a M2l (c:Va.a = avT—T)

rNMa.a—avr—=7)=>71

23/36

Push

RedPushArrow G()\(X | ,7_) M> N .
(A(x : ') (Right G)(M[x + (Left G){(x)])) N

RedLeftArrow RedRightArrow
Left (Gl 5 Gz) ~y Gl Right (Gl N Gz) ~3, G2

N(Capp : U (U = U))N(cam : (U— U)>U)M

24/36

System F_.

Orthogonal features should easily and fully compose.

When combining upper bounded polymorphism and subtyping
we naturally get an intermediate language more expressive
than the most expressive version of F_..

Q Na<:7Fo<:o

FrNHv(a<:t)o < V(a<:7) 0o

Depending on the| variant, the first premise may be:

Kernel-Fsub
=7

25/36

System F_.

Orthogonal features should easily and fully compose.

When combining upper bounded polymorphism and subtyping
we naturally get an intermediate language more expressive
than the most expressive version of F_..

Q Na<:7Fo<:o

r-ve:r)o < V(a<:7) o

Depending on the variant, the first premise may be:

Kernel-Fsub
=7

25/36

System F_.

Orthogonal features should easily and fully compose.

When combining upper bounded polymorphism and subtyping
we naturally get an intermediate language more expressive
than the most expressive version of F_..

Q Na<:7Fo<:o

r=ve:r)o < Via<:7) o

Depending on the variant\the first premise may be:

Kernel-Fsub
=7

F-Bounded
Na<:7rFa<:t

25/36

System F_.

Orthogonal features should easily and fully compose.

When combining upper bounded polymorphism and subtyping
we naturally get an intermediate language more expressive
than the most expressive version of F_..

The typing rule of F,. is derivable in F? using the following
typing rules (absent from F,.):

MN(abc:7) FG: p>o Fe=p
FEXavc:T)G: pr> Y(a>T)=0

r=G: pe Vavr)=1 -G :ob1[a+ o]
F'EG{o>G'}: pr Ta+ d]

25/36

Full distrib

akFOa:Va.t>1

akFQa)— O :1T—=o>NVa.7) >0
aF((Qa)—=0)(Qa):Va.T—o>(Va.7) =0
F Aa ((0a) = 0)Oa) : Va.T = o>Va. (Va.T) = 0
F Dist (Aa (0) = 0)(O) :Va.T — o> (Va.7) — Va.o

26 /36

System F,, examples

generalization

instantiation

7-expansion

I Va.r | 7la <+ o]
a
r7 a | T F \V/OZ.T
Na M Mo Ax 7)) Go[M (Gi[x])]

27/36

Pure Lambda Calculus

X,y
M = x| Mx M| MM

C = M[M |M]]
Redmtez: M RedBeta
CIM] ~ C[M']

Variables
Terms

Reduction contexts

(Ax. M) M ~» M[x < M]

28 /36

Simply-typed lambda calculus

X,y Term variables
T,0 .= T—>0 Types
M,N = x| AXx:T)M|MN Terms
Co=Xx:n)[IIM|M] Reduction contexts
TermTermApp
TermVar TermTermLam r-M:7—o
x:Tel Mx:7TEM:o Fr=N:r
Nex:r FrEAXx:T)M:T—>0 r’EMN:o
RedContextBeta
M g N RedTerm

CIM] ~5 C[N] (A(x:7) M) N ~~5 M[x < N]

29/36

System F: Polymorphism as coercions

The necessary simply-typed lambda calculus is in grey.

7,0 == 17— 0| a|Var Types
M,N == x| Ax:7)M|MN]|P[M)| Terms
P = Nal]|[]7 One-node coercions
TermTypeLam TermTypeApp
NakEM: 1 Fr=M: Va.1 o
F=AaM: Yot Mo 7[a + J]
RedType

(A M) 7~ Mlaw 7]

30/36

System F: Polymorphism as coercions

a, B Type variables

T,0 = .. |a|VYar Types

M,N = ...| P[M] Terms

P = ANal]|[]7 Coercion contexts

C = ..|P Reduction contexts

TermTypeLam TermTypeApp
NaFM:Tt =M :Va.7

=AM : Va1 Mo : 7T[a < o]

RedContextlota
M ~, N RedType

CIM] =, C[N] (A M) T ~>, Mo < 7]

31/36

System F,: Subtyping as coercions

System F,, is the closure of System F by n-reduction.

Fr=EM:r M sy M
r-m:r

32/36

System F,: Subtyping as coercions

System F,, is the closure of System F by n-reduction.

rEmM:r7 M, M
r-m:r

There are two presentations of F, with coercions:

» A lambda-term version: the one we have seen so far,
where judgmentsare ' G : (A-7)>o.
The syntax is simple but typing is involved because
coercions may bind.

» A proof-term version where judgments take the form
r-G:7oo0.
Typing is simpler but the coercion constructs are less
atomic and numerous.
We chose a mix presentation to get the best of both.

32/36

c Coercion variables

S = 4> Bounds

7,0 = .. |Y(a>T)=>0 Types

P := .. Mawc:T)M| M{r < G} One-node coercions

G = .. |Dist’®r= Coercions
TermTCoerLam

Nawvsc:7THFM:o
F-XMawsc:T)M:YV(aweT)=0

TermT CoerApp

r-M:viwer)=1 N G:o<wo7a<+ o]
M= M{oc<w G} 7'[a+ o]

Ma<w>c:1)M){oc > G} ~, Mo + d][c + G]

33/36

c Coercion variables
S = 4> Bounds
7,0 = .. |Y(a>T)=>0 Types
P := .. Mawc:T)M| M{r < G} One-node coercions
G = .. |Dist’®r= Coercions

CoerDistTCoerArrow

MN=r Nakp NakFo
[Dist’*>= : (Y(a < p) = 7 — o) > (1 = Y(a < p) = 0)

T—0

RedCoerDistCoerArrow

Dist”®®2= (Ao ¢ : p) A(x : 7) M) ~, A(x : 7) Mo ¢ : p) M

' —0o!

33/36

Erasing function
The erasing function removes type annotations, abstractions,
and applications.
[x] = x
IA(x:7) M| = Ax.|[M]
M N| = [M][N]
[PIM]] = [M]

34/36

Erasing function

The erasing function removes type annotations, abstractions,
and applications.

[x] = x
IA(x:7) M| = Ax.|M]
M N| = [M][N]
[PIM]] = [M]
The unfolding of the last line is:
[Aa M] = [M]
(Mo = [M]

34/36

System F,

7,0 i= 70 |a|Var|p=T pu=T>O
M,N = x| Ax:7)M|MN
| NaM | Mt

G := NG| GT

Polymorphism:

TermTypeLam TermTypeApp
NatFM: 1 Fr=M: Va.1 o
r=AaM: Va.7 F'EMo: 7[a+ o]
RedType

(A M) 7~ Mo 4= 7]

35/36

System F,
7,0 i= T —o0|a|Var|e=T puU=TD>O
M,N = x| Ax:7)M|MN
| NaM | Mt | G(M)
G = NG| G| G(Gy)
Coercion application:

TermCoer

TFG:7>o r-=m: r
r-G6GM): o

35/36

System F,
7,0 i= 70 |a|Var|p=T pu=T>O
M,N = x| Ax:7)M|MN
| AaM | Mt | G(M)
G = NG| GT | G(Gy)
| 07
Reflexivity:

CoerDot

=7
Fr=0": 7o 71

RedCoerDot

O (M)~ M

35/36

System F,
7,0 i= 70 |a|Var|p=T pu=T>O
M,N = x| Ax:7)M|MN
| AaM | Mt | G(M)
G = NG| GT | G(Gy)
| 07

One-node coercion injection:

Pon M PonG
NAFM: 71 NMAFG: p> T =p
Fr=P[M]: o FFP[G]l: p>o

RedCoerfFill

(PIG])(M) ~ P[G{M)]

35/36

System F,
7,0 i= 70 |a|Var|p=T pu=T>O
M,N = x| Ax:7)M|MN
| AaM | Mt | G(M)
G = NG| GT | G(Gy)
| 07| G5 G
Arrow congruence (subtyping):

CoerArrow

-G :mn>mn MGy

I+ G13G2Z(T{—>TQ)I>(T1—)T£)

RedCoerArrow

(G1 3 G)(A(x 7)) M)~ Ax:71) Go{M[x + Gi(x)])

35/36

System F,

7,0 i= 70 |a|Var|p=T pu=T>O

M,N = x| Ax:7)M|MN
| AaM | Mt | G(M)

G = NG| GT | G(Gy)

| 07 | G5 G, | Dist’

T—0
It permutes Aav and A\(x : 7)

CoerDistTypeArrow

Fe7r (ie aé ftv(r)) Nako

[Dist™, : (Yoa.T — o) > (1 — Ya. o)

RedCoerDist TypeArrow

Dist™™, ,(Aa A(x : 7) M) ~, A(x:7) ha M

7' —0o!

35/36

System F,
7,0 i= 70 |a|Var|p=T pu=T>O
M,N = x| Ax:7)M|MN

ANeM | M7 | GIM) | Nc:p)M | M{G}

NG| GT | Gi(G) | Mc:p)G | G{G'}

| 07 | G5 G, | Dist™;

T—0

G :

Coercion abstraction:

TermCoerApp
TermCoerLam M= G: @
M(c:p) FM: 7 Fre=M: p=r1
FFANc:o)M: p=71 r=M{G}: 7

(;\(:er@) M){G} ~, M[c + G]

35/36

System F,
7,0 i= T —o0|a|Var|e=T puU=TD>O
M,N = x| Ax:7)M|MN
ANeM | Mt | GIM) | N(c:¢)M | M{G}
NG | GT | GG | Nc:9)G | G{G'}
| 07| G5 Gy | Dist™ | ¢

T—0

G :

Coercion variable:

CoerVar

[+ ok c:pel
Fc:p

35/36

System F,
7,0 i= 70 |a|Var|p=T pu=T>O
M,N = x| Ax:7)M|MN
| NaM | M1 | GIM) | N(c:p)M | M{G}
G = NG| Gt | G(G) | Nc:¢)G | G{G'}
|

| 0" | Gt > G, | Dist™ c | Dist?=,

7'—>0'

It permutes A(c: ¢) and A(x : 7)

CoerDistCoerArrow

7 TrFe TFo
[=Dist?Z, i (p= (1 = 0))> (7 — (p = 0))

T—0

RedCoerDlstCoerArrow

Dist? = ,(A(c: @) A(x : 7) M) ~, A(x:7)Nc:p) M

7' —0o!

35/36

Why study coercions?
Intuition
Goal
Typing rules
Graphical typing rules
Simply-typed lambda calculus
Type system features
Polymorphism
Coercions
Erasability
Bisimulation
Coercion judgments
Properties of F,
Losing backward simulation
A default solution
System FP
Result: Ff subsumes F. ., Fy, and MLF
Future work
Extra slides
Push
System F..
Full distrib
System F;; examples
Pure Lambda Calculus
Simply-typed lambda calculus
System F: Polymorphism as coercions
System F: Polymorphism as coercions
System F,;: Subtyping as coercions
System Ff
Erasing function
System F,

36/36

	Why study coercions?
	Intuition
	Goal
	Typing rules
	Graphical typing rules
	Simply-typed lambda calculus
	Type system features
	Polymorphism

	Coercions
	Erasability
	Bisimulation
	Coercion judgments
	Properties of F-iota
	Losing backward simulation
	A default solution
	System F-iota-param
	Result: F-iota-param subsumes F-sub, F-eta, and MLF
	Future work
	Extra slides
	Push
	System F-sub
	Full distrib
	System F-eta examples
	Pure Lambda Calculus
	Simply-typed lambda calculus
	System F: Polymorphism as coercions
	System F: Polymorphism as coercions
	System F-eta: Subtyping as coercions
	System F-iota-param
	Erasing function
	System F-iota

