Type Soundness and Race Freedom for Mezzo

Thibaut Balabonski François Pottier Jonathan Protzenko

INRIA

FLOPS 2014

Mezzo in a few words

Mezzo is a high-level programming language, equipped with:

- algebraic data types;
- first-class functions;
- garbage collection;
- mutable state;
- shared-memory concurrency.

Its static discipline is based on permissions...

Permissions by example

```
val r1 = newref ()
(* r1 @ ref () *)
```


Permissions by example

```
val r1 = newref ()
(* r1 @ ref () *)
val r2 = r1
(* r1 @ ref () * r2 @ =r1 *)
```


Permissions by example

$$
\begin{aligned}
& \text { val r1 = newref () } \\
& (* r 1 @ r e f() *) \\
& \text { val r2 = r1 } \\
& (* r 1 @ r e f() * r 2 @=r 1 *) \\
& (* r 1 @ r e f() * r 2=r 1 *)
\end{aligned}
$$

Permissions by example

$$
\begin{aligned}
& \text { val r1 = newref () } \\
& (* r 1 @ r e f() *) \\
& \text { val r2 = r1 } \\
& (* r 1 @ r e f() * r 2 @=r 1 *) \\
& (* r 1 @ r e f() * r 2=r 1 *) \\
& \text { val () }=r 1:=0 \\
& (* r 1 @ r e f i n t * r 2=r 1 *)
\end{aligned}
$$

Permissions by example

```
val r1 = newref ()
(* r1 @ ref () *)
val r2 = r1
(* r1 @ ref () * r2 @ =r1 *)
(* r1 @ ref () * r2 = r1 *)
val () = rl := 0
(* r1 @ ref int * r2 = r1 *)
val x2 = ! r2 + 1
(* r1 @ ref int * r2 = r1 * x2 @ int *)
```


Permissions by example

$$
\begin{aligned}
& \text { val r1 = newref () } \\
& \text { (* r1 @ ref () *) } \\
& \text { val r2 = r1 } \\
& \text { (* r1 @ ref () * r2 @ =r1 *) } \\
& \text { (* r1 @ ref () * r2 = r1 *) } \\
& \text { val () = rl := } 0 \\
& \text { (* r1 @ ref int * r2 = r1 *) } \\
& \text { val } \times 2=!r 2+1 \\
& \text { (* r1 @ ref int * r2 = r1 * x2 @ int *) } \\
& \text { val } \mathrm{p}=(\mathrm{r} 1, \mathrm{r} 2) \\
& \text { (* r1 @ ref int * r2 = r1 * x2 @ int * p @ (=r1, =r2) *) }
\end{aligned}
$$

Permissions by example

```
val r1 = newref ()
(* rl @ ref () *)
val r2 = r1
(* r1 @ ref () * r2 @ =r1 *)
(* r1 @ ref () * r2 = r1 *)
val () = rl := 0
(* r1 @ ref int * r2 = r1 *)
val x2 = !r2 + 1
(* r1 @ ref int * r2 = r1 * x2 @ int *)
val p = (r1, r2)
(* r1 @ ref int * r2 = r1 * x2 @ int * p @ (=r1, =r2) *)
val () = assert p @ (ref int, ref int) (* REJECTED *)
```


Permissions by example

```
val r1 = newref ()
(* r1 @ ref () *)
val r2 = r1
(* r1 @ ref () * r2 @ =r1 *)
(* r1 @ ref () * r2 = r1 *)
val () = r1 := 0
(* r1 @ ref int * r2 = r1 *)
val x2 = ! r2 + 1
(* r1 @ ref int * r2 = r1 * x2 @ int *)
val p = (r1, r2)
(* r1 @ ref int * r2 = r1 * x2 @ int * p @ (=r1, =r2) *)
val () = assert p @ (ref int, ref int) (* REJECTED *)
val () = assert p @ (r: ref int, =r) (* ACCEPTED *)
```


Permissions by example

```
val r1 = newref ()
(* rl @ ref () *)
val r2 = r1
(* r1 @ ref () * r2 @ =r1 *)
(* r1 @ ref () * r2 = r1 *)
val () = rl := 0
(* r1 @ ref int * r2 = r1 *)
val x2 = !r2 + 1
(* r1 @ ref int * r2 = r1 * x2 @ int *)
val p = (r1, r2)
(* r1 @ ref int * r2 = r1 * x2 @ int * p @ (=r1, =r2) *)
val () = assert p @ (ref int, ref int) (* REJECTED *)
val () = assert p @ (r: ref int, =r) (* ACCEPTED *)
val () = assert p @ (=r, r: ref int) (* ACCEPTED *)
```


Permissions by example

```
val rl = newref ()
(* r1 @ ref () *)
val r2 = r1
(* r1 @ ref () * r2 @ =r1 *)
(* r1 @ ref () * r2 = r1 *)
val () = rl := 0
(* r1 @ ref int * r2 = r1 *)
val x2 = !r2 + 1
(* r1 @ ref int * r2 = r1 * x2 @ int *)
val p = (r1, r2)
(* r1 @ ref int * r2 = r1 * x2 @ int * p @ (=r1, =r2) *)
val () = assert p @ (ref int, ref int) (* REJECTED *)
val () = assert p @ (r: ref int, =r) (* ACCEPTED *)
val () = assert p @ (=r, r: ref int) (* ACCEPTED *)
```


Permissions by example

val r1 = newref ()
(* rl @ ref () *)

$$
\text { val } r 2=r 1
$$

$$
\left(^{*} r 1 @ r e f() * r 2 @=r 1 *\right)
$$

(* r1 @ ref () * r2 = r1 *)

$$
\operatorname{val}()=r 1:=0
$$

(* r1 @ ref int * r2 = r1 *)

val $x 2=!r 2+1$
(* r1 @ ref int * r2 = r1 * x2 @ int *)
val $p=(r 1, r 2)$
(* r1 @ ref int * r2 = r1 * x2 @ int * p @ (=r1, =r2) *)
val () = assert p @ (ref int, ref int) (* REJECTED *)
val () = assert p @ (r: ref int, =r) (* ACCEPTED *)
val () = assert p @ (=r, r: ref int) (* ACCEPTED *)

Motivation

Imagine an imperative implementation of sets:

```
val make: [a] () -> set a
val insert: [a] (set a, consumes a) -> ()
val merge: [a] (set a, consumes set a) -> ()
```


Motivation

Imagine an imperative implementation of sets:

```
val make: [a] () -> set a
val insert: [a] (set a, consumes a) -> ()
val merge: [a] (set a, consumes set a) -> ()
```

Then,

- let s = make() in ... produces s @ set t

Motivation

Imagine an imperative implementation of sets:

```
val make: [a] () -> set a
val insert: [a] (set a, consumes a) -> ()
val merge: [a] (set a, consumes set a) -> ()
```

Then,

- let s = make() in ... produces s @ set t
- cannot do merge(s, s) ;

Motivation

Imagine an imperative implementation of sets:

```
val make: [a] () -> set a
val insert: [a] (set a, consumes a) -> ()
val merge: [a] (set a, consumes set a) -> ()
```

Then,

- let s = make() in ... produces s @ set t
- cannot do merge(s, s);
- cannot do merge(s1, s2); insert(s2, x);

Motivation

Imagine an imperative implementation of sets:

```
val make: [a] () -> set a
val insert: [a] (set a, consumes a) -> ()
val merge: [a] (set a, consumes set a) -> ()
```

Then,

- let s = make() in ... produces s @ set t
- cannot do merge(s, s);
- cannot do merge(s1, s2); insert(s2, x);
- cannot do insert(s, x1) and insert(s, x2) in independent threads.

Motivation

Imagine an imperative implementation of sets:

```
val make: [a] () -> set a
val insert: [a] (set a, consumes a) -> ()
val merge: [a] (set a, consumes set a) -> ()
```

Then,

- let $s=$ make() in ... produ error in sequential code: protocol violation
- cannot do merge(s, s);
- cannot do merge(s1, s2); insert(s2, x);
- cannot do insert(s, x1) and insert(s, x2) in independent threads.

Motivation

Imagine an imperative implementation of sets:

```
val make: [a] () -> set a
val insert: [a] (set a, consumes a) -> ()
val merge: [a] (set a, consumes set a) -> ()
```

Then,

- let $s=$ make() in ... produ error in concurrent code: data race
- cannot do merge(s, s);
- cannot do merge(s1, s2); insert \quad (, x);
- cannot do insert(s, x1) and insert(s, x2) in independent threads.

Permissions, in a nutshell

Like a program logic, Mezzo's static discipline is flow-sensitive.

- A current (set of) permission(s) exists at each program point.
- Different permissions exist at different points.
- There is no such thing as the type of a variable.

A permission has layout and ownership readings.
A permission is either duplicable or affine.

What this talk is not about

The paper and talk do not discuss:

- algebraic data types, which describe tree-shaped data,
- (static) regions, which can describe non-tree-shaped data,
- adoption \& abandon, a dynamic alternative to regions, and much more (ICFP 2013).

Algebraic data types

data list $\mathrm{a}=$
| Nil
| Cons \{ head: a; tail: list
data mutable mlist a =
| MNil
| MCons \{ he d: a; toll: mlist a \}

Melding mutable lists

Concatenating immutable lists

```
val rec append_aux [a] (consumes (
    dst: MCons { head: a; tail: () },
    xs: list a, ys: list a
)) : (| dst @ list a) =
    match xs with
    | Cons ->
    let dst' = MCons { heza, = xs head; tail = () } in
        dst.tail <- dst';
        tag of dst=- ©s
        append_a x (ds, xs.tail, ys)
    | Nil ->
        dst.tail <- ys;
        tag of dst <- Cons
    end
```


Regions

abstract region
val newregion: () -> region
abstract rref (rho : value) a fact duplicable (rref rho a)
val newrref: (consumes x © val get: (r: rref rh duplicable a | rho @ region) -> a

Adoption and abandon

```
val dfs [a] (g: graph a, f: a -> ()) : () =
    let s = stack::new g.roots in
    stack::work (s, fun (n: dynamic
                | g @ graph a * s @ s`abk Nviamic) : () =
        take n from g;
        if not n.visited then begi,
        n.visited <- true
        f n.content:
        stack::p sh (n nolghbors, s)
    end;
    give n to g
    )
```


What this talk is about

So, what are the paper and talk about?

- extend Mezzo with threads and locks;
- describe a modular, machine-checked proof of
- type soundness;
- data race freedom.

Outline

- Threads, data races, and locks (by example)
- Mezzo's architecture
- The kernel and its proof (glimpses)
- Conclusion

A data race

```
open thread
val r = newref 0
val f (| r @ ref int) : () =
r := !r + 1
val () =
    spawn f ;
    spawn f
```


A data race

open thread
val $r=$ newref 0
val f (| r @ ref int) : () =
$r:=!r+1$
val () = spawn f ; spawn f

A data race

open thread
val $r=$ newref 0
val f (| r @ ref int) : () =
$r:=!r+1$
val () =

and does NOT give it back

A data race

open thread

val $r=$ newref 0
val f (| r @ ref int) : () =
$r:=!r+1$
val () $=$
spawn f;
spawn $f \longrightarrow \begin{aligned} & \text { TYPE ERROR! } \\ & \text { (in fact, this code is racy) }\end{aligned}$

Introducing synchronization

```
open thread
open lock
val r = newref 0
val l : lock (r @ ref int) = new()
val f () : () =
    acquire l;
    r := !r + 1;
    release l
val () =
    spawn f ;
    spawn f
```


Introducing synchronization

```
open thread
open lock
val r = newref 0
val l : lock (r @ ref int) = new()
val f () : () =
    acquire l;
    r:= !r + 1;
    release l
val () =
    spawn f ;
    spawn f
this consumes r @ ref int
the lock now mediates access to it
```


Introducing synchronization

Introducing synchronization

Introducing synchronization

Introducing synchronization

Introducing synchronization

```
open thread
open lock
val r = newref 0
val l : lock (r @ ref int) = new()
val f () : () =
    acquire l;
    r:= !r + 1;
    release l
val () =
    spawn f ;
    spawn f
                WELL-TYPED!
                    (yup, this code is race free)
```


Abstracting synchronization

(* A second-order function. *)
val hide : [a, b, s : perm] (f : (consumes a | s) -> b | consumes S
) -> (consumes a) -> b

Abstracting synchronization

```
(* A second-order function. *)
val hide : [a, b, s : perm]
    consumes S
) -> (consumes a) -> b
\[
\begin{aligned}
& \text { hide is polymorphic in s } \\
& \text { e.g., r@ ref int }
\end{aligned}
\]
```


Abstracting synchronization

```
(* A second-order function. *)
val hide : [a, b, s : perm] (
    f : (consumes a | s) -> b
    consumes s
) -> (consumes a) -> b
```

```
hide takes a function f
```

hide takes a function f
which has a side effect on s

```
which has a side effect on s
```


Abstracting synchronization

Abstracting synchronization

```
(* A second-order function. *)
val hide : [a, b, s : perm] (
    f : (consumes a | s) -> b |
    consumes s
) -> (consumes a) -> b
```

```
hide produces a new function
```

hide produces a new function
which has no advertised effect

```
which has no advertised effect
```


A synchronization pattern

```
open lock
val hide [a, b, s : perm] (
    f : (consumes a | s) -> b |
    consumes s
) : (consumes a) -> b =
    let l : lock s = new () in
    fun (consumes x : a) : b =
        acquire l;
        let y = f x in
        release l;
        y
```


Introducing synchronization, revisited

```
open thread
open hide
val r = newref 0
val f (| r @ ref int) : () =
    r := !r + 1
val f = hide f
val () =
    spawn f;
    spawn f
```


Introducing synchronization, revisited

Introducing synchronization, revisited

```
open thread
open hide
val r = newref 0
val f (| r @ ref int) : () =
    r := !r + 1
val f = hide f
val () =
        spawn f;
        spawn f
```

```
r @ ref int
```

r @ ref int
f @ (| r @ ref int) -> ()

```
f @ (| r @ ref int) -> ()
```


Introducing synchronization, revisited

```
open thread
open hide
val r = newref 0
val f (| r @ ref int) : () =
    r := !r + 1
val f = hide f
val () =
        spawn f;
        spawn f
f @ () -> ()
```


Introducing synchronization, revisited

```
open thread
open hide
val r = newref 0
val f (| r @ ref int) : () =
    r := !r + 1
val f = hide f
val () =
    spawn f;
    spawn f
        WELL-TYPED!
    (yup, this code is race free)
```


Outline

- Threads, data races, and locks (by example)
- Mezzo's architecture
- The kernel and its proof (glimpses)
- Conclusion

What is Mezzo?

A kernel:

- a λ-calculus with threads;
- affine, polymorphic, value-dependent, with type erasure.

Several extensions:

- mutable state: references;
- hidden state: locks;
- dynamic ownership control: adoption and abandon.

All machine-checked in Coq (14KLOC).

Modularity

We wish to prove that well-typed programs:

- do not go wrong;
- are data-race free.

This is trivial - true of all programs - in the kernel calculus!
Subject reduction and progress are non-trivial results.
We set up their proof so that it is robust in the face of extensions.

Modularity

We parameterize the kernel with:

- a type of machine states s;
- a type of instrumented states R, or resources;
- which must form a monotonic separation algebra;
- a correspondence relation, $s \sim R$.

Subject reduction and progress hold for all such parameters.

Pseudo-Modularity

The kernel is not parameterized w.r.t. the extensions.
We add the extensions, one after another, on top of the kernel.
So, the Coq code is monolithic. Fortunately,

- each extension is (morally) independent of the others;
- the key statements do not change with extensions;
- only new proof cases appear.

Outline

- Threads, data races, and locks (by example)
- Mezzo's architecture
- The kernel and its proof (glimpses)
- Conclusion

Values and terms

A fairly unremarkable untyped λ-calculus with threads.

$$
\begin{array}{rlll}
\kappa & ::=\text { value } \mid \text { term } \mid \text { soup } \mid \ldots & \text { (Kinds) } \\
v & ::=x \mid \lambda x . t & & \text { (Values) } \\
t & ::=v|v t| \text { spawn } v v & & \text { (Terms) }
\end{array}
$$

Operational semantics

> initial configuration
> $s /(\lambda x . t) v$
> $s / E[t]$
> $s /$ thread (t)
> $s / t_{1} \| t_{2}$
> $s / t_{1} \| t_{2}$
> new configuration
> $\longrightarrow s \quad /[v / x] t$
> $\longrightarrow \boldsymbol{s}^{\prime} \quad / E\left[t^{\prime}\right]$
> if $s / t \longrightarrow s^{\prime} / t^{\prime}$
> $\longrightarrow s^{\prime} /$ thread $\left(t^{\prime}\right)$
> if $s / t \longrightarrow s^{\prime} / t^{\prime}$
> $\longrightarrow s^{\prime} \quad / t_{1}^{\prime} \| t_{2}$
> if $s / t_{1} \longrightarrow s^{\prime} / t_{1}^{\prime}$
> $\longrightarrow s^{\prime} \quad / t_{1} \| t_{2}^{\prime}$
> if $s / t_{2} \longrightarrow s^{\prime} / t_{2}^{\prime}$
> $s / \operatorname{thread}\left(D\left[\operatorname{spawn} \boldsymbol{v}_{1} \boldsymbol{v}_{2}\right]\right) \longrightarrow \boldsymbol{s} \quad /$ thread $(D[()]) \|$ thread $\left(\boldsymbol{v}_{1} \boldsymbol{v}_{2}\right)$

Operational semantics

$$
\begin{aligned}
& \text { initial configuration } \\
& s /(\lambda x . t) v \\
& s / E[t] \\
& s / \text { thread }(t) \\
& s / t_{1} \| t_{2} \\
& s / t_{1} \| t_{2} \\
& s / \text { thread }(t) \\
& \longrightarrow s^{\prime} / \text { thread }\left(t^{\prime}\right) \\
& \text { if } s / t \longrightarrow s^{\prime} / t^{\prime} \\
& \longrightarrow s^{\prime} \quad / t_{1}^{\prime} \| t_{2} \\
& \text { if } s / t_{1} \longrightarrow s^{\prime} / t_{1}^{\prime} \\
& \longrightarrow s^{\prime} \quad / t_{1} \| t_{2}^{\prime} \\
& \text { if } s / t_{2} \longrightarrow s^{\prime} / t_{2}^{\prime} \\
& \boldsymbol{s} / \operatorname{thread}\left(D\left[\operatorname{spawn} \boldsymbol{v}_{1} \boldsymbol{v}_{2}\right]\right) \longrightarrow \boldsymbol{s} \quad / \operatorname{thread}(D[()]) \| \text { thread }\left(\boldsymbol{v}_{1} \boldsymbol{v}_{2}\right)
\end{aligned}
$$

Types and permissions

$$
\begin{array}{rlrl}
\kappa: & := & \ldots \mid \text { type } \mid \text { perm } & \\
\text { (Kinds) } \\
T, U::= & x|=v| T \rightarrow T \mid(T \mid P) & & \text { (Types) } \\
& \forall x: \kappa . T \mid \exists x: \kappa . T & & \\
P, Q::= & x|v @ T| \text { empty } \mid P * P & & \text { (Permissions) } \\
& \forall x: \kappa . P \mid \exists x: \kappa . P & & \\
& & \text { duplicable } \theta & \\
\theta: & T \mid P & &
\end{array}
$$

The typing judgement

A traditional type system uses a list Γ of type assumptions:

$$
\Gamma \vdash t: T
$$

Mezzo splits it into a list K of kind assumptions and a permission P :

$$
K, P \vdash t: T
$$

This can be read like a Hoare triple: $K \vdash\{P\} t\{T\}$.

The typing judgement

A typing judgement about a running program (or thread) depends on a resource R :

$$
R, K, P \vdash t: T
$$

R is the thread's partial, instrumented view of the machine state...

Resources

A resource is:

- partial: a resource could be, say, a heap fragment;
- instrumented: a resource could record whether each location is mutable or immutable.

Resources

A resource is:

- partial: a resource could be, say, a heap fragment;
- instrumented: a resource could record whether each location is mutable or immutable.

At this stage, though, resources are abstract.
What properties must we require of them?

Monotonic separation algebra

$\begin{array}{ll}R & \begin{array}{l}\text { resource } \\ \text { e.g., an instrumented heap fragment } \\ \text { maps every address to } \downarrow, N, X v, \text { or } D v\end{array} \\ R_{1} \star R_{2} & \begin{array}{l}\text { conjunction } \\ \text { e.g., requires separation at mutable addresses } \\ \text { requires agreement at immutable addresses }\end{array} \\ \widehat{R} \quad \begin{array}{l}\text { duplicable core } \\ \text { e.g., throws away mutable addresses } \\ \text { keeps immutable addresses }\end{array} \\ R_{1} \triangleleft R_{2} & \begin{array}{l}\text { tolerable interference (rely) } \\ \text { e.g., allows memory allocation }\end{array}\end{array}$

Working with abstract resources

- Star \star is commutative and associative.
- $R_{1} \star R_{2}$ ok implies R_{1} ok.
- $R \star \widehat{R}=R$.
- $R_{1} \star R_{2}=R$ and R ok imply $\widehat{R_{1}}=\widehat{R}$.
- $R \star R=R$ implies $R=\widehat{R}$.
- $\widehat{R} \star \widehat{R}=\widehat{R}$.
- $R \triangleleft R$.
- R_{1} ok and $R_{1} \triangleleft R_{2}$ imply R_{2} ok.
- $R_{1} \triangleleft R_{2}$ implies $\widehat{R_{1}} \triangleleft \widehat{R_{2}}$.
- rely preserves splits:

$$
\frac{R_{1} \star R_{2} \triangleleft R^{\prime} \quad R_{1} \star R_{2} \text { ok }}{\exists R_{1}^{\prime} R_{2}^{\prime}, R_{1}^{\prime} \star R_{2}^{\prime}=R^{\prime} \wedge R_{1} \triangleleft R_{1}^{\prime} \wedge R_{2} \triangleleft R_{2}^{\prime}}
$$

A small set of typing rules

ExistsElim
$R ; K, x: \kappa ; P \vdash t: T$
$R ; K ; \exists x: \kappa . P \vdash t: T$
:---
$K \vdash P_{1} \leq P_{2} \quad R ; K ; P_{2} \vdash t: T$
$R ; K ; P_{1} \vdash t: T$
:---
$R ; K ; P \vdash t: T_{1} \quad K \vdash T_{1} \leq T_{2}$
$R ; K ; P \vdash t: T_{2}$

Application
$\frac{R ; K ; Q \vdash t: T}{R ; K ;(v @ T \rightarrow U) * Q \vdash v t: U}$

Spawn
$R ; K ;\left(v_{1} @ T \rightarrow U\right) *\left(v_{2} @ T\right) \vdash$ spawn $v_{1} v_{2}: \top$

Selected typing rules

The kernel typing rules manipulate R abstractly.

$$
\frac{\widehat{R} ; K, x: \text { value } ; P * x @ T \vdash t: U}{R ; K ;(\text { duplicable } P) * P \vdash \lambda x . t: T \rightarrow U}
$$

$$
\begin{gathered}
R_{2} ; K ; P_{1} * P_{2} \vdash t: T \\
\frac{R_{1} ; K \Vdash P_{1}}{R_{1} \star R_{2} ; K ; P_{2} \vdash t: T}
\end{gathered}
$$

Selected typing rules

The kernel typing rules manipulate R abstractly.

$$
\begin{aligned}
& \frac{\widehat{R} ; K x: \text { value } ; P * x @ T \vdash t: U}{R ; K ;(\text { duplicable } P) * P \vdash \lambda x . t: T \rightarrow U} \begin{array}{l}
R_{2} ; K ; P_{1} * P_{2} \vdash t: T \\
R_{1} ; K \Vdash P_{1}
\end{array} \\
& R_{1} \star R_{2} ; K ; P_{2} \vdash t: T \\
& \begin{array}{l}
\text { cannot capture an arbitrary resource } R \\
\text { can capture its duplicable core } \widehat{R}
\end{array} \\
& \hline
\end{aligned}
$$

Selected typing rules

The kernel typing rules manipulate R abstractly.

$$
\begin{gathered}
\frac{\widehat{R} ; K, x: \text { value } ; P * x @ T \vdash t: U}{R ; K ;(\text { duplicable } P) * P \vdash \lambda x . t: T \rightarrow U} \quad \begin{array}{c}
R_{2} ; K ; P_{1} * P_{2} \vdash t: T \\
R_{1} ; K \Vdash P_{1}
\end{array} \\
\begin{array}{l}
\text { if a typing rule has two premises } \\
\text { then } R \text { must be split between them }
\end{array} \\
\hline
\end{gathered}
$$

Subject reduction

Lemma (S.R., preliminary form)

\(\left.\begin{array}{c}s_{1} / t_{1} \longrightarrow s_{2} / t_{2}

s_{1} \sim R_{1} \star R_{1}^{\prime}

R_{1} ; \varnothing ; empty \vdash t_{1}: T\end{array}\right]\)| $s_{2} R_{2}^{\prime} \sim R_{2} \star R_{2}^{\prime}$ |
| :--- |
| $R_{2} ; \varnothing ;$ empty $\vdash t_{2}: T$ |
| $R_{1}^{\prime} \triangleleft R_{2}^{\prime}$ |

Subject reduction

Subject reduction

this thread's view is R_{1}

 the other threads ' view is R_{1}^{\prime}
Lemma (S.R., preliminary form)

$s_{1} / t_{1} \longrightarrow s_{2} / t_{2}$
$s_{1} \sim R_{1} \star R_{1}^{\prime}$
$\exists R_{2} R_{2}^{\prime}\left\{\begin{array}{l}s_{2} \sim R_{2} \star R_{2}^{\prime} \\ R_{2} ; \varnothing ; \text { empty } \vdash t_{2}: T \\ R_{1}^{\prime} \triangleleft R_{2}^{\prime}\end{array}\right.$

Subject reduction

```
this thread is well-typed
under its view
```


Lemma (S.R., preliminary form)

$\frac{s_{1} / t_{1} \longrightarrow s_{2} / t_{2}}{s_{1} \sim R_{1} \star R_{1}^{\prime}}$| $\exists R_{2} R_{2}^{\prime}\left\{\begin{array}{l}s_{2} \sim R_{2} \star R_{2}^{\prime} \\ R_{2} ; \varnothing ; \text { empty } \vdash t_{2}: T \\ R_{1}^{\prime} \triangleleft R_{2}^{\prime}\end{array}\right.$ |
| :---: |

Subject reduction

Lemma (S.R., preliminary form)

this thread's view and the other threads' view evolve

Subject reduction

Lemma (S.R., preliminary form)

the new machine state agrees
with the new views

Subject reduction

Lemma (S.R., preliminary form)

the thread remains well-typed under its view

Subject reduction

Lemma (S.R., preliminary form)

the interference inflicted on the other threads is tolerable

Subject reduction

Theorem (Subject Reduction)
Reduction preserves well-typedness.

Progress

A configuration c is acceptable if every thread:

- has reached an answer; or
- is able to make one step; or
- (after introducing locks) is waiting on a locked lock.

Theorem (Progress)
Every well-typed configuration is acceptable.

Data race freedom

Cannot be stated for the kernel. We introduce references first. There, writing requires an exclusive access right. Hence, it is easy to prove that:

Theorem
A well-typed program cannot exhibit a data race.

Outline

- Threads, data races, and locks (by example)
- Mezzo's architecture
- The kernel and its proof (glimpses)
- Conclusion

Related work

Alias Types. Separation Logic. L^{3}. (And a lot more.)
Views (Dinsdale-Young et al., 2013) are particularly relevant.

- extensible framework;
- monolithic machine state, composable views, agreement;
- while-language instead of a λ-calculus.

A few lessons

- The good old syntactic approach to type soundness works.
- Formalization helps clarify and simplify. A lot.
- In the end, it is "just" affine λ-calculus.

Thank you

More information in the paper and online: http://gallium.inria.fr/~protzenk/mezzo-lang/

Try it out!

Road map

Dealing with binding

In Coq, we use only one syntactic category.
Well-kindedness distinguishes values, terms, types, etc.

- avoids a quadratic number of substitution functions!
- makes it easy to deal with dependency.

Binding encoded via de Bruijn indices.
Re-usable library, dblib.
The main hygiene lemmas have >90 cases and 4 -line proofs.

Algebraic data types

data list a =
| Nil
| Cons \{ head: a; tail: list a \}
data mutable mlist a =
| MNil
MCons \{ head: a; tail: mlist a \}

Melding mutable lists

```
val rec meld_aux [a]
    (xs: MCons \{ head: a; tail: mlist a \},
        consumes ys: mlist a) : () =
    match xs.tail with
    | MNil ->
        xs.tail <- ys
    MCons ->
    meld_aux (xs.tail, ys)
    end
```


Concatenating immutable lists

```
val rec append_aux [a] (consumes (
    dst: MCons { head: a; tail: () },
    xs: list a, ys: list a
)) : (| dst @ list a) =
    match xs with
    | Cons ->
        let dst' = MCons { head = xs.head; tail = () } in
        dst.tail <- dst';
        tag of dst <- Cons;
        append_aux (dst', xs.tail, ys)
    | Nil ->
        dst.tail <- ys;
        tag of dst <- Cons
    end
```


Regions

```
abstract region
val newregion: () -> region
abstract rref (rho : value) a
fact duplicable (rref rho a)
val newrref: (consumes x: a | rho @ region) -> rref rho a
val get: (r: rref rho a | duplicable a | rho @ region) -> a
val set: (r: rref rho a, consumes x: a | rho @ region) -> ()
```


Adoption and abandon

```
val dfs [a] (g: graph a, f: a -> ()) : () =
    let s = stack::new g.roots in
    stack::work (s, fun (n: dynamic
        | g @ graph a * s @ stack dynamic) : () =
        take n from g;
        if not n.visited then begin
        n.visited <- true;
        f n.content;
        stack::push (n.neighbors, s)
        end;
        give n to g
    )
```

