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What does ML stand for?

ML is supposed to be a Meta-Language...

... so it must be good at manipulating abstract syntax, right?
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Why ML is inadequate

Here is an ML algebraic data type for λ-terms:

type term =
| Var of str ing
| Abs of str ing × term
| App of term × term
| Let of str ing × term × term

Now, try formulating capture-avoiding substitution, for instance... The
task will be heavy and error-prone.

The problem is, ML deals with sums and products, but does not know
about binders.
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Representing the λ-calculus in FreshML

To remedy this shortcoming, FreshML (Pitts & Gabbay, 2000) makes
names and binding (also known as atoms and abstractions) primitive
notions.

Here is a FreshML algebraic data type for λ-terms:

type term =
| Var of atom
| Abs of 〈 atom × inner term 〉
| App of term × term
| Let of 〈 atom × outer term × inner term 〉

Now, capture-avoiding substitution can be written in a natural way...
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Example: capture-avoiding substitution

1 fun sub accepts a , t , s =
2 case s of
3 | Var (b ) →
4 i f a = b then t else Var (b )
5 | Abs (b , u ) →
6 Abs (b , sub (a , t , u ) )
7 | App (u , v ) →
8 App (sub (a , t , u ) , sub (a , t , v ) )
9 | Let (x , u1 , u2) →

10 Let (x , sub (a , t , u1) , sub (a , t , u2) )
11 end

The dynamic semantics of FreshML dictates that, on line 5, the
name b is automatically chosen fresh for both a and t. The term u
is renamed accordingly. As a result, no capture can occur.
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Why (unrestricted) FreshML is inadequate

So far, so good. But FreshML allows defining bizarre “functions”:

fun bv accepts x =
case x of
| Var (a) →

empty
| Abs (a , t ) →

sing leton (a) ∪ bv (t )
| App (t , u ) →

bv (t ) ∪ bv (u )
| . . .

The dynamic semantics of FreshML dictates that, for a fixed term t,
every call to bv(t) returns a (distinct) set of fresh atoms!
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Why (unrestricted) FreshML is inadequate

By letting freshly generated names escape their scope, FreshML
allows defining “functions” whose semantics is not a mathematical
function – that is, impure functions.

But nobody would write code like bv, right?
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Why (unrestricted) FreshML is inadequate

Can you spot the flaw in this more subtle example?

fun optimize accepts t =
case t of
| Abs (x , App (e , Var (y ) ) ) →

i f x = y then optimize (e ) else next case
| . . .

Ideally, a FreshML compiler should check that names do not escape
– which also means that all functions are pure. In short, we need
static name control for FreshML.
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Towards domain-specific program proof

Isn’t that too ambitious? Shouldn’t this issue be left aside until
someone comes by and proves the program correct?

Proofs about names are easy in principle, but also easy to drown in.
This means that they are prime candidates for full automation.

We are looking at a kind of domain-specific program proof.

Manual specifications (preconditions, postconditions, etc.) will
sometimes be required, but all proofs will be fully automatic.
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State of the art

Pitts and Gabbay’s “FreshML 2000” did have static name control,
enforced via a type system that could keep track of, and establish,
freshness assertions.

This type system was abandoned circa 2003, because it was too
limited.

Sheard and Taha’s MetaML avoids the problem by tying name
generation and name abstraction together, at a significant cost in
expressiveness.
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Contribution

My contribution is to:

I introduce a rich logic for reasoning about values and sets of
names, together with a conservative decision procedure for this
logic;

I allow logical assertions to serve as function preconditions or
postconditions and to appear inside algebraic data type
definitions;

I exploit Cαml’s flexible language for defining algebraic data types
with binding structure.
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What do we prove?

What does it mean for an atom not to escape its scope?

What requirements should we impose on the code?

How do we know that these requirements are sufficient to ensure
that valid programs have pure meaning?

The answer is in nominal set theory (Gabbay & Pitts, 2002).
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Where proof obligations arise

Wherever we write fresh x in e, we get:

I a hypothesis that x is fresh for all pre-existing objects;

I a proof obligation that x is fresh for the result of e.

An analogous phenomenon takes place when matching against an
abstraction pattern.
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A simple example

Here is an excerpt of the capture-avoiding substitution function:

fun sub accepts a , t , s =
case s of
| Abs (b , u ) →

Abs (b , sub (a , t , u ) )
| . . .

Matching against Abs yields the hypothesis b # a, t, s and the proof
obligation b # Abs(b, sub(a, t, u)), which is easily discharged, since b is
never in the support of Abs(b, . . .).
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A more subtle example

Here is an excerpt of an “optimization” function for λ-terms:

fun optimize accepts t =
case t of
| Let (x , Var (y ) , u ) →

optimize (sub (x , Var (y ) , u ) )
| . . .

How do we prove that x does not appear in the support of the value
produced by the right-hand side? We need precise knowledge of the
behavior of capture-avoiding substitution.
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Assertions

Let us add to our definition of capture-avoiding substitution (already
shown) an explicit postcondition:

fun sub accepts a , t , s
produces u where free (u ) ⊆ free (t ) ∪ ( free (s ) \ free (a ) ) =

case s of
| Var (b ) →

i f a = b then t else Var (b )
| . . .

This has a double effect: produce a new hypothesis inside “optimize”
and new proof obligations inside “sub”.
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Benefits inside “optimize”

fun optimize accepts t =
case t of
| Let (x , Var (y ) , u ) →

optimize (sub (x , Var (y ) , u ) )
| . . .

The postcondition for “sub” tells us that

x is fresh for sub(x, Var(y), u),

which implies that

x is also fresh for optimize(sub(x, Var(y), u)).

Indeed, in Pure FreshML, functions cannot make up new (free) names!
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Obligations inside “sub”

fun sub accepts a , t , s
produces u where free (u ) ⊆ free (t ) ∪ ( free (s ) \ free (a ) ) =

case s of
| Var (b ) →

i f a = b then t else Var (b )
| . . .

The postcondition is propagated down into each branch of the case
and if constructs and instantiated where a value is returned. For
instance, inside the else branch, one must prove

free(Var(b)) ⊆ free(t) ∪ free(s) \ free(a)

At the same time, case and if give rise to new hypotheses. Inside
the else branch, we have s = Var(b) and a 6= b.
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Discharging proof obligations

How do we check that

s = Var(b)
a # b

}
imply free(Var(b)) ⊆ free(t) ∪ free(s) \ free(a) ?

Well, s = Var(b) implies free(s) = free(Var(b)) by congruence, and
free(Var(b)) is free(b) by definition of the type “term”.

Furthermore, since a and b have type atom, a 6= b is equivalent to
free(a) # free(b).
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Discharging proof obligations

There remains to check that

free(s) = free(b)
free(a) # free(b)

}
imply free(b) ⊆ free(t) ∪ free(s) \ free(a)

No knowledge about the semantics of free is required to prove this,
so let us replace free(a) with A, free(b) with B, and so on...

(A, B, S, T denote finite sets of atoms.)
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Discharging proof obligations

There remains to check that

S = B
A # B

}
imply B ⊆ T ∪ S \ A

This is initially an assertion about finite sets of atoms, but it turns
out that its truth value is unaffected if we view it as an assertion
about Booleans:

(¬S ∨ B) ∧ (¬B ∨ S)
¬(A ∧ B)

}
imply ¬B ∨ T ∨ (S ∧ ¬A)

Think of this shift of perspective as focusing on a single atom.
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Discharging proof obligations

Finally, the assertion boils down to the unsatisfiability of

(¬S ∨ B) ∧ (¬B ∨ S) ∧ (¬A ∨ ¬B) ∧ B ∧ ¬T ∧ (¬S ∨ A)

which a SAT solver will prove fairly easily (an understatement).

Reducing all proof obligations down to Boolean formulæ obviates the
need for a set of ad hoc proof rules.

The reduction is incomplete, but comes “reasonably close” to
completeness...
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One source of incompleteness

Replacing every set expression of the form free(x) with a set
variable X is always sound – if we can prove that the property holds
of an arbitrary set X, then also holds of the particular set free(x).

It is complete only if free(x) can actually denote every possible set of
atoms.

However, because the type of x is known, this is not necessarily the
case.
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One source of incompleteness

For instance, if x has integer type, then free(x) denotes the empty
set. If x has type atom, then free(x) denotes a singleton set. And
so on...

To mitigate this source of incompleteness, I translate free(x) to:

I ∅, when every inhabitant of the type of x has empty support;

I X, together with the constraint X 6= ∅, when no inhabitant of the
type of x has empty support;

I X, as before, otherwise.

The logic allows stating X = ∅ and X 6= ∅, but does not allow further
reasoning about cardinality.
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The full constraint language, as of today

s ::= free(v) | ∅ | A | s ∩ s | s ∪ s | ¬s set expressions
F ::= b | 0 | 1 | F ∧ F | F ∨ F | ¬F Boolean expressions
C ::= F ⇒ s = ∅ | s 6= ∅ | v = v | C ∧ C constraints

Here, v ranges over values of arbitrary type, while b ranges over
variables of type “bool”.
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Normalization by evaluation

This was put forward by Shinwell, Pitts and Gabbay (2003) as a
piece of code whose well-behavedness is difficult to establish.

It is accepted by Pure FreshML up to three changes:

I replacing first-class functions with explicit data structures;

I decorating these data structures with appropriate binding
information;

I annotating the main function with a postcondition.

(The absence of first-class functions may be a temporary limitation.)
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Conversion to A-normal form

This transformation simplifies complex, tree-structured expressions by
hoisting out and naming intermediate computations. It is defined as
follows:

Evaluation contexts:

E ::= [] | let x = E in e | E e | v E | . . .

Transformation rules (freshness side-conditions implicit!):

E[let x = e1 in e2] → let x = e1 in E[e2]
E[v1 v2] → let x = v1 v2 in E[x]
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Conversion to A-normal form

I know of two ways of implementing this transformation:

I Flanagan et al.’s continuation-passing style algorithm, in the
style of Danvy and Filinski; for people who write two-level
programs in their sleep...

I a direct-style, context-passing style algorithm; for mere mortals.

Perhaps surprisingly, Flanagan et al.’s algorithm is easily proved
correct in Pure FreshML (modulo defunctionalization).
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Conversion to A-normal form

I wrote another algorithm, which avoids continuations and
manipulates explicit contexts – terms with a hole.

The algorithm’s main function, split, accepts a term t and produces
a pair of a context C and a term u such that t has the same
meaning as C[u].

The code is straightforward, but coming up with an adequate type
definition for contexts was not immediate.
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Floating up contexts

The contexts that are floated up are defined by:

C ::= [] | let x = e in C

So, when a context of the form

let x1 = e1 in . . . let xn = en in []

is eventually filled with an expression e,

I occurrences of xi in e become bound;

I occurrences of xi in ei+1, . . . , en become bound.

I occurrences of xi in e1, . . . , ei remain free.
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η-expansion, fixed

The corrected code is accepted:

fun optimize accepts t =
case t of
| Abs (x , App (e , Var (y ) ) ) →

i f x = y and not member (x , free (e ) )
then optimize (e )
else next case

| . . .

Note that =, and, not, member, and free are simply primitive
operations with accurate specifications – and if is just syntactic
sugar for case over Booleans.
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Some primitive operations

Here are the specifications for these built-in functions:

(=) accepts x , y produces b where b → free ( x ) = free (y )
where not b → free ( x ) # free (y )

and accepts x , y produces z where z = ( x and y )

not accepts x produces y where y = not x

member accepts x , s produces b where b → free ( x ) ⊆ free (s )
where not b → free ( x ) # free (s )

free accepts x produces s where free (s ) = free ( x )
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A to-do list

There remains a wealth of ideas to explore in order to turn Pure
FreshML into a realistic meta-programming language:

I local functions;

I mutable state;

I exceptions;

I extra primitive operations;

I multiple sorts of atoms;

I type & sort polymorphism, parameterized algebraic data types;

I non-linear patterns;

I safe non-freshening.
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Safe non-freshening

Sometimes, it is safe to match against an abstraction without
freshening its bound atoms:

l e t t = . . . in
case . . . of
| Abs (x , u ) →

Abs (x , App (u , u ) ) / / freshening not required
| Abs (x , u ) →

Abs (x , App (t , u ) ) / / freshening required
| Abs (x , u ) →

sub (x , t , u ) / / freshening not required

But when is it safe and how do we prove it?
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Nominal sets

Atoms are drawn from a countably infinite set A.

A nominal set X is equipped with an action of the finite
permutations of atoms on the elements of X such that every
element has finite support.

The support of an element x ∈ X is the least set of atoms outside
of which no permutation affects x.
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Types as nominal sets

Every type of FreshML will be interpreted as a nominal set, which
effectively means that the operations of renaming and support are
available at all types.

Nominal sets are typically constructed out of other nominal sets via
a combination of the following constructions:

A the universe of atoms
X1 × X2 product
X1 + X2 sum
〈A〉 X the abstractions over elements of X
X1 → X2 the finitely supported functions of X1 into X2
µ(F) least fixed point
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Freshness

Two elements x1, x2 are fresh for one another iff x1 and x2 have
disjoint support. This is written x1 # x2.

A property P is said to be true of some/any sufficiently fresh atom a
if and only if P holds of all but a finite set of atoms. This is
written NEW a.P .
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Locally fresh atoms

Key fact. Let f be an element of the nominal function space A → X
such that

NEW a. a # f(a) – f does not leak a

That is, for some/any sufficiently fresh atom a, the image of a
through f does not have a in its support. Then, there exists a
unique element x of X such that

NEW a. x = f(a) – f(a) does not depend upon the choice of a
– provided a is chosen sufficiently fresh

The element x is written new a in f(a).
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Locally fresh atoms: example

For instance, if b is a fixed atom and f maps a to 〈a〉 (b, a), then
a # f(a) holds for all atoms a.

This means that there exists a unique x such that

NEW a. x = 〈a〉 (b, a)

(In fact, this holds for all atoms a except b.)

This element x is usually written new a in 〈a〉 (b, a).

Note that new binds the meta-variable a, while 〈a〉 abstracts the
atom denoted by a.
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A pure semantics for FreshML

The key fact leads directly to a denotational semantics for
FreshML’s fresh construct:

Jfresh x in eK•η = new a in JeK•η[x 7�a]

Of course, this makes sense only if the key fact’s requirement is
met:

NEW a. a # JeK•η[x 7�a]

If we enforce this condition, then Jfresh x in eK•η is well-defined, and
uniquely defined – this denotational semantics is pure.

This gives precise meaning to the condition “x does not escape its
scope” and explains why it guarantees a pure semantics.
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