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Abstract
A wide range of computer programs, including compilers and the-
orem provers, manipulate data structures that involve names and
binding. However, the design of programming idioms which allow
performing these manipulations in a safe and natural style has, to a
large extent, remained elusive.

In this paper, we present a novel approach to the problem. Our
proposal can be viewed either as a programming language design
or as a library: in fact, it is currently implemented within Agda. It
provides a safe and expressive means of programming with names
and binders. It is abstract enough to support multiple concrete
implementations: we present one in nominal style and one in de
Bruijn style. We use logical relations to prove that “well-typed
programs do not mix names with different scope”. We exhibit an
adequate encoding of Pitts-style nominal terms into our system.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features—Data types and struc-
tures; Polymorphism

General Terms Design, Languages, Theory

Keywords names, binders, meta-programming, name abstraction,
higher-order abstract syntax

1. Introduction
A wide range of computer programs, including compilers and theo-
rem provers, manipulate and transform data structures that involve
names and bindings. Significant effort has been invested in the de-
sign of programming idioms or languages that support these tasks
in a safe and natural style. Nevertheless, a definitive solution is yet
to be found. One challenge is to abstract away the details of any
one particular implementation technique, such as atoms and permu-
tations, or de Bruijn indices and shifting. A greater still challenge
is to design a lightweight yet expressive static discipline to ensure
that names are handled in a sound way.

One must first ask: what does it mean to handle names in a
sound way? The question is trickier than it seems. There are several
informal slogans that attempt to describe what this means:

1. “name abstractions cannot be violated”; or: “the representa-
tions of two α-equivalent terms cannot be distinguished”;

2. “names do not escape their scope”;
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3. “names with different scopes cannot be mixed”.

These slogans are not equivalent; we have listed them in increasing
order of strength. A traditional representation of names as strings
or de Bruijn indices satisfies none of these slogans. A system such
as FreshML [22] satisfies only the first slogan. A strongly-typed
representation of names as well-scoped de Bruijn indices satisfies
the first two slogans, but, we argue (§4.5), not the third one. Finally,
several systems in the literature [10, 12, 16–18, 21], as well as the
one presented in this paper, satisfy all three.

Our approach This paper describes a new way of addressing
these challenges. We present an interface composed of a number of
types and operations for declaring and manipulating data structures
that involve names and binding. This interface can be viewed either
as a library or as a programming language design.

In support of the “library” point of view, we provide an imple-
mentation as a library within Agda. It could also be implemented
within another variant of type theory, such as Coq. Our implemen-
tation exploits dependent types to express internal invariants and to
guarantee that certain operations cannot fail.

In support of the “language” point of view, our proposal could
also be viewed as an extension of a standard calculus, such as
System Fω , with new primitive types and operations. The types
of our primitive operations do not involve dependency.

As far as the programmer is concerned, our types and operations
remain abstract. In particular, the nature of names is not revealed.
As a result, multiple implementations of our interface are possible.
We currently have two: one is based on atoms, in the style of
FreshML, while the other is based on de Bruijn indices.

In summary, we propose a novel approach to programming with
names and binders. The semantics of the system is elementary:
it rests upon a number of explicit, low-level primitive operations.
No renaming, shifting, or substitution are built into the semantics.
The programmer is offered an abstract view of names, independent
of the chosen implementation scheme. One original feature of our
proposal is that name abstraction is not primitive: it is built out
of more elementary notions. This helps understand the essence
of name abstraction, and increases the system’s expressiveness by
allowing programmers to build custom forms of name abstractions.

Overview of the paper In order to control the use of names, we
introduce an abstract notion of world. The type system associates
a world with each name, and allows two names to be compared
for equality only if they inhabit a common world. Names, worlds,
as well as a number of other types and operations, are introduced
in §3. At the same time, the system is explained via examples of
increasing complexity.

In §4, we describe our two implementation schemes. In the
nominal scheme, worlds are sets of atoms. In the de Bruijn-index-
based scheme, worlds are integer bounds. We then justify the
soundness of our interface. We do this twice: once for each im-
plementation scheme. In each case, we make novel use of logical
relations in order to give richer meaning to worlds: we explain



how worlds can be viewed as bijections between names. In this
setting, the fundamental theorem of logical relations corresponds
to the three desired slogans. The slogans remain informal, though,
because our system does not have a notion of “α-equivalence”, or
“scope”, to begin with. We do prove that nominal terms in the style
of Pitts are adequately encoded in our system; this yields a formal
version of slogan 1 with respect to Pitts’ notion of α-equivalence.

In our interface, a number of key primitive operations are pro-
vided only at names, and must be explicitly lifted (by the program-
mer) to user-defined data types. In §5, we show how to do this,
and suggest that some of this boilerplate code can be automatically
produced via generic programming. We conclude with an advanced
example 6 and with discussions of related work (§7) and future
work (§8).

2. A brief introduction to Agda notation
Throughout the paper, our definitions are presented in the syn-
tax of Agda. In Agda, Set is the type of small types like Bool,
Maybe (List Bool), or N. Set1 is the type of Set. The function
space is written A → B, while the dependent function space is
written ∀ (x : A) → B. An implicit parameter, introduced via
∀ {x : A} → B, can be omitted at a call site if its value can
be inferred from the context. There are shortcuts for introducing
multiple arguments at once or for omitting a type annotation, as in
∀ {A} { i j : A} x→ ....

Existential quantification is available via the type constructor ∃,
which accepts a type function as its argument, as in ∃λα→ (α→
N)× (N→ α).

A data constructor name can be used in multiple data types.
Agda makes use of type annotations to resolve ambiguities.

As in Haskell, a definition consists of a type signature and a
sequence of defining equations, which may involve pattern match-
ing. The with construct extends a pattern-matching-based defini-
tion with new columns. An ellipsis ... is used to elide a redundant
equation prefix.

Agda is strict about whitespace: x+y is an identifier, whereas
x + y is an application. This allows naming a variable after its
type (deprived of any whitespace). We use mixfix declarations,
such as _⊕_. We use some definitions from Agda’s standard
library: operations over functors (_〈$〉_), monads (return, _>>=_),
and applicative functors (pure, _~_).

For the sake of conciseness, the code fragments presented in
the paper are sometimes not perfectly self-contained. However, a
complete Agda development is available online [19].

3. Working with names and binders
We now present the signature (that is, the abstract types and oper-
ations) that our system offers to programmers. For the sake of pre-
sentation, we intersperse fragments of this signature (declarations)
with examples of their use (code fragments).

Worlds We first introduce worlds, which names inhabit. There
is an empty world, which no names inhabit. There are no other
concrete worlds: most of the time, the programmer uses world
variables α, β, γ, δ.

World : Set
ø : World

We often use relations Rel, and in particular relations over worlds
Rel World.

Rel : Set→ Set1
Rel A = ∀ (α β : A)→ Set

Agda does not have a clear phase distinction, that is, a clear distinc-
tion between values and types. Nevertheless, one can also view our

system as an extension of a calculus that does have this distinction,
such as System Fω under a type-erasure semantics. In that view,
worlds, like types, can be erased at runtime.

Names The type of names, Name, is indexed with a world. The
idea is that two names can safely be compared only if they inhabit
a common world. This is apparent in the type of the name equality
test.

Name : ∀ (α : World)→ Set
_ ?
=Name_ : ∀ {α} → Name α→ Name α→ Bool

To witness the fact that no name inhabits the empty world, we
introduce a function which produces a contradiction when applied
to a name in the empty world. Its codomain is the empty type⊥. Put
differently, this function allows marking some cases as impossible,
and instructs the system to statically check that they are indeed so.

¬nameø : Name ø→ ⊥

Weak links Let us go on to our next ingredient: a type for weak
links between worlds.

_↼_ : Rel World

If α and β are worlds, then α ↼ β is a type. Roughly speaking,
a name x has type α ↼ β under two conditions: first, x inhabits
the world β; second, the world that existed before x was introduced
is α. Put another way, α ↼ β is a more precise type for names.
It keeps track of the worlds just before and just after a name is
bound. We usually refer to α as the “outer” world and to β as
the “inner” world. Weak links allow keeping track of connections
between worlds: intuitively speaking, if x has type α ↼ β, then
the worlds α and β assign the same meaning to every name other
than x. The name x itself may have no meaning at all in α, or it may
have some meaning in α and a different meaning in β. Our weak
links do not require x to be fresh for α: they allow a new binding
to shadow an earlier binding. Later on, we introduce strong links,
which do imply a freshness condition.

Since a weak link is just a more precise type for a name, we
offer a way of converting the former into the latter.

nameOf↼ : ∀ {α β} → α ↼ β → Name β

Example: representing λ-terms We now have enough elements
to declare algebraic data types that involve names and binders. Let
us begin with an explicitly typed object-language: the untyped λ-
calculus with local (let) definitions.

data Tm (α : World) : Set where
V : ∀ (x : Name α)→ Tm α
_·_ : ∀ (t u : Tm α)→ Tm α
¬ : ∀ {β} (x : α ↼ β) (t : Tm β)→ Tm α
Let : ∀ {β} (x : α ↼ β) (t : Tm α) (u : Tm β)→ Tm α

The type constructor Tm is indexed with a world. The type Tm α
can be thought of as a type of terms whose free names inhabit
the world α. Accordingly, the constructor V carries a name that
inhabits α, and the constructor for applications carries two sub-
terms that inhabit α. The constructor ¬ shows how we build simple
name abstractions. It carries a weak link (the name to be bound)
between the outer world α and some inner world β. The body of
the abstraction inhabits this inner world: it has type Tm β. The
abstraction itself inhabits the outer world: it has type Tm α. Since β
does not occur in the latter type, it is really existentially quantified:
viewed from the outside, an abstraction contains an unknown inner
world. In Let, the sub-term t inhabits the outer world α: thus, it is
not in the scope of the bound name x. On the other hand, the sub-
term u inhabits the inner world β: it is in the scope of x. It is easy
to see how one would define LetRec.



Using worlds, names, and weak links, it is possible to define a
wide range of data structures with binders. The above encoding of
λ-terms is but one instance of a general encoding of Pitts’ nominal
terms and nominal signatures. We describe this general encoding
and prove it adequate in §4.3. In fact, our system is more expressive
than Pitts’: this is illustrated by several examples in this section.

Here is a trivial example of a function that traverses a term
and measures its size. It is remarkable for its simplicity: name
abstractions are traversed without fuss. This unaltered induction
also tells a bit about the expressiveness of such functions. It is
also efficient: no renaming, substitution, or shifting is involved.
Polymorphic recursion is exploited: the call to size t in the ¬ case
is at some inner world.

size : ∀ {α} → Tm α→ N
size (V ) = 1
size (t · u) = 1 + size t + size u
size (¬ t) = 1 + size t
size (Let t u) = 1 + size t + size u

Exporting names When two worlds are connected via a weak
link, it is desirable to be able to move names from one world into
the other along the link. We introduce the function export↼ for this
purpose.

export↼ : ∀ {α β} → α ↼ β → Name β → Maybe (Name α)

The function export↼ expects two names x and y, whose types are
α ↼ β and Name β. It compares (nameOf↼ x) and y for equality.
If they are equal, export↼ fails: the name y has meaning in β,
but may not have meaning, or may have a different meaning, in
α. If they differ, export↼ succeeds and returns y at type Name α:
indeed, since y is not x, it has the same meaning in both worlds.
export↼ is a partial function: it can fail. It is an injective function:
if export↼ x y and export↼ x z are equal, then y and z are
equal. Like _ ?

=Name _, export↼ is a name equality test. However,
it performs type refinement: in the event that the names differ, the
input name is returned with a more precise type.

The reader may wonder whether it is possible to move a name in
the other direction, from the outer world α into the inner world β.
The answer is negative: this would be unsound. (For a justifica-
tion, see the discussion of dubious in §4.2.) Later on, we introduce
a means of moving in this direction, namely world inclusion wit-
nesses.

Example: working with free and bound names We now have
enough tools to present a more interesting example, namely a
function that constructs a list of the free variables of a term. At
variables and applications, the code is straightforward. At a name
abstraction, one easily collects the free variables of the body via a
recursive call. However, this yields a list of names that inhabit the
inner world of the abstraction—a value of type List (Name β).
This list cannot be returned, and this is fortunate, since doing so
would let the bound variable leak out of its scope! We define an
auxiliary function, rm, which removes all occurrences of a name in
a list of names and at the same time performs type refinement in
the style of export↼.

fv : ∀ {α} → Tm α→ List (Name α)
fv (V x) = [x ]
fv (fct · arg) = fv fct ++ fv arg
fv (¬ x t) = rm x (fv t)
fv (Let x t u) = fv t ++ rm x (fv u)

rm : ∀ {α β} → α ↼ β → List (Name β)→ List (Name α)
rm [ ] = [ ]
rm x (y :: ys) with export↼ x y
... | just y = y :: rm x ys
... | nothing = rm x ys

The function rm applies export↼ x to every name y in the list
and builds a list of only those that successfully cross the link x.
It exhibits a typical way of using export↼ to perform a name
comparison together with a type refinement. This idiom is recurrent
in the programs that we have written.

The function fv enjoys a free theorem, that is, a theorem that
follows directly from its type: every name in the output list must
occur free in the input term. This claim is backed up by the typed
models in §4.2 and §4.4.

Example: working with environments Here is another example,
where we introduce the use of an environment.

occurs : ∀ {α} → Name α→ Tm α→ Bool
occurs x0 = occ (λ y→ x0

?
=Name y)

where
OccEnv : World→ Set
OccEnv α = Name α→ Bool
extend : ∀ {α β} → α ↼ β → OccEnv α→ OccEnv β
extend x Γ y = maybe Γ false (export↼ x y)

occ : ∀ {α} → OccEnv α→ Tm α→ Bool
occ Γ (V y) = Γ y
occ Γ (t · u) = occ Γ t ∨ occ Γ u
occ Γ (¬ x t) = occ (extend x Γ) t
occ Γ (Let x t u) = occ Γ t ∨ occ (extend x Γ) u

The function occurs tests whether some name x occurs free in a
term. An environment Γ is carried down, augmented when a binder
is crossed, and looked up at variables. Here, this environment is
represented as a function of type Name α → Bool. Although this
is a simple and elegant representation, others exist. For instance,
we could represent the environment as a linked list of weak links:
the code for this variant is online [19]; see also below.

We claim that this code is standard and uncluttered. There is
no hidden cost: no renaming is involved. Admittedly, linked lists
are not the most efficient representation of environments. It would
be nice to be able to implement environments using, say, balanced
binary search trees, while preserving well-typedness. We leave this
issue to future study.

The type system forces us to use names in a sound way. For in-
stance, in the definition of occ, forgetting to extend the environment
when crossing a binder would cause a type error. In the definition
of extend, attempting to check whether y occurs in Γ without first
comparing y and x would cause a type error. In our nominal im-
plementation scheme (§4.1), it is permitted for newer bindings to
shadow earlier ones; our type discipline guarantees that the code
works also in that case.

As suggested previously, one may wish to represent environ-
ments as an explicit data structure (a linked list of weak links) rather
than as an opaque object (a lookup function). While there exists an
appropriate abstraction in Agda’s standard library called Star, we
define a custom data type. An environment is a chain of weak links.
At runtime, it is just a list of names.

data _?↼_ (T : Rel World) : Rel World where
ε : ∀ {α} → α ?↼ α
_/_ : ∀ {α β γ} (x : β ↼ γ) (Γ : α ?↼ β)→ α ?↼ γ

The export↼ operation is extended to chains of weak links:

export?↼ : ∀ {α β} → α ?↼ β → Name β → Maybe (Name α)
export?↼ ε y = just y
export?↼ (x / Γ) y = export↼ x y >>= export?↼ Γ

where open MaybeMonad

The type α ?↼ β is the type of an environment, or environment
fragment, whose outer world is α and whose inner world is β. The
expression export↼ Γ y looks up the name y in the environment Γ.
The name y must make sense in the scope of Γ, that is, y must



inhabit the world β. If y is found among the bindings, then the
information associated with y can be returned. (Here, there is no
such information, so nothing is returned.) If y is not found among
the bindings, then y is returned, with a more precise type: indeed,
since y is not among the names introduced by Γ, it makes sense
outside Γ, that is, in the world α.

We illustrate the use of chains of weak links with an alternative
definition of the function fv. This variant avoids the need to take
the bound atoms off the list by not inserting them in the first
place. At variables, we use export?↼ to check whether the name
is free or bound. At every other node, we simply carry out a
recursive traversal. Whenever a name abstraction is entered, the
current environment Γ is extended with the bound name x.

fv’ : ∀ {β α} → α ?↼ β → Tm β → List (Name α)
fv’ Γ (V x) = List.fromMaybe (export?↼ Γ x)
fv’ Γ (t · u) = fv’ Γ t ++ fv’ Γ u
fv’ Γ (¬ x t) = fv’ (x / Γ) t
fv’ Γ (Let x t u) = fv’ Γ t ++ fv’ (x / Γ) u

Importing names We now introduce world inclusion witnesses
_⊆_, whose purpose is to allow moving names from a smaller
world into a larger world. In other words, we equip worlds with
a system of explicit subtyping. World inclusion is reflexive and
transitive; the type constructor Name is covariant; the empty world
is the least world.

_⊆_ : Rel World
⊆-refl : ∀ {α} → α ⊆ α
⊆-trans : ∀ {α β γ} → α ⊆ β → β ⊆ γ → α ⊆ γ
import⊆ : ∀ {α β} → α ⊆ β → Name α→ Name β
ø-bottom-⊆ : ∀ {α} → ø ⊆ α

Like links, world inclusion witnesses come with an import⊆ func-
tion, which moves a name from one world into the other. One major
difference with weak links is that this function is total.

α γ

β δ

↼

⊆ ⊆

↼

While importing names is nice and simple, we
are interested, in general, in importing complex
terms or data structures from one world into an-
other. This requires, in particular, being able to im-
port abstractions. Upon close examination, we find
that we need this commutative diagram to hold.

We make this property available to the programmer by introduc-
ing the following primitive operation:

_↼-commute-⊆_ : ∀ {α β γ} → α ↼ γ → α ⊆ β
→ ∃ λ δ → γ ⊆ δ × β ↼ δ

At this point, it is probably not clear why this commutative diagram
is sound, or why it is useful. Its soundness – as well as that of every
primitive operation presented here – is justified in §4. Its usefulness
is illustrated in §5.2 and §5.3.

Strong links Next, we introduce strong links. Again, the type
α ↼→ β is a precise type for a name: it is more precise than α ↼ β
and (therefore) more precise than Name β. If x has type α ↼→ β,
then x is guaranteed to be fresh for the world α. That is, a strong
link represents the introduction of a binding for a fresh name, and
(in contrast with a weak link) cannot possibly shadow an earlier
binding. As a result, if x has type α ↼→ β, then α ⊆ β must hold:
out of a strong link, one can produce a world inclusion witness.

_↼→_ : Rel World
weaken : ∀ {α β} → α ↼→ β → α ↼ β
dropName : ∀ {α β} → α ↼→ β → α ⊆ β

Technically, a strong link comes with an even stricter guarantee: the
name x must not just be fresh for α; it must dominate every atom
in α, in a sense to be made precise later on (§4.1).

One might wonder why we need both weak links and strong
links. Why not use strong links everywhere, since they offer a

stronger guarantee? The answer is: precisely because they are
stronger than weak links, strong links are also more difficult to con-
struct. In particular, strong links do not enjoy an analogue of the
diagram _↼-commute-⊆_. Such a diagram would be unsound,
because a name that is fresh for a smaller world is not necessarily
fresh for a larger world. Yet, a commutative diagram in the style
of _↼-commute-⊆_ plays a key role in the definition of gener-
alized import operations (§5.3). This explains why we often use
weak links in our term representations, such as Tm.

Generating names The alert reader may have noticed that, up to
this point, we have not yet introduced a way of producing names
or links! To address this issue, we need a mechanism for producing
fresh names. We find that it is sufficient to be able to produce strong
links, since a strong link can degenerate into a weak link and into a
name. We view a fresh name with respect to the world α as a strong
link into some unspecified next world β, and define the following
abbreviation:

Fresh : World→ Set
Fresh α = ∃ λ β → α ↼→ β

We introduce two primitive operations for creating fresh names.
freshø is an initial strong link—a name that is fresh for the empty
world. next↼→ accepts two names: one is a weak link between two
worlds α and β; the other is fresh for α. next↼→ produces a name
that is fresh for β.

freshø : Fresh ø
next↼→ : ∀ {α β γ} → α ↼ β → α ↼→ γ → Fresh β

Together, these two low-level operations allow constructing an in-
finite stream of fresh names, that is, a name generator.

Packaging up We are done introducing the abstract types and
operations that we offer to the users of our library (or programming
language). In summary, we have four primitive types (names, weak
links, strong links, and world inclusion witnesses), and a number of
operations over these types. In the Agda implementation, we find
it convenient to package each type together with the operations
that it offers. An idiomatic way of doing this involves defining
parameterized records, like this:

module NamePack {β} (x : Name β) where
nameOf : Name β
nameOf = x

module WeakPack {α β} (x : α ↼ β) where
open NamePack (nameOf↼ x) public
weakOf : α ↼ β
weakOf = x
exportWith : Name β → Maybe (Name α)
exportWith = export↼ x

module ⊆Pack {α β} (x : α ⊆ β) where
⊆Of : α ⊆ β
⊆Of = x
importWith : Name α→ Name β
importWith = import⊆ x

module StrongPack {α β} (x : α ↼→ β) where
open WeakPack (weaken x) public
open ⊆Pack (dropName x) public
strongOf : α ↼→ β
strongOf = x
nextOf : Fresh β
nextOf = next↼→ weakOf strongOf

module FreshPack {α} (x : Fresh α) where
open StrongPack (proj2 x) public

The open/public declarations cause one record to be included
within another. This permits a limited form of inheritance and
overloading. For instance, within the scope of appropriate open



declarations, the method nameOf is applicable to names of type
Name α, α ↼ β, α ↼→ β, and Fresh α.

Constructing terms Once this boilerplate is set up, we at last
show how to construct a term. For example, let us build a repre-
sentation of the object-level term λ x y→ x y.

app : Tm ø
app = ¬ (weakOf x) (¬ (weakOf y)

(V (importWith y (nameOf x)) · V (nameOf y)))
where open FreshPack

x = freshø
y = nextOf x

We generate two fresh names x and y. Each of these names is
viewed as a weak link (via weakOf) when playing the role of a
binding occurrence and is viewed as a name (via nameOf) when
playing the role of a regular occurrence. Furthermore, in order
to satisfy the type-checker, the regular occurrence of x must be
imported into the scope of y.

This is admittedly fairly difficult to read. If our system was im-
plemented as a stand-alone programming language, as opposed to a
library within Agda, it seems reasonable to think that one would be
able to make the invocations of weakOf, nameOf, and importWith
implicit. The omitted information would be reconstructed by a local
type inference algorithm.

Towards elaborate uses of worlds The type Tm is just one basic
example of an algebraic data type that involves names and binders.
As a more challenging example, consider a type C of one-hole
contexts associated with Tm. The type C is indexed with two
worlds, which respectively play the roles of an outer world and
an inner world. The idea is, plugging a term of type Tm β into the
hole of a context of type C α β produces a term of type Tm α. The
definition of the type C is as follows:

module Context where
data C : World→World→ Set where
Hole : C α α
_·1_ : ∀ {β} C α β → Tm α→ C α β
_·2_ : ∀ {β} Tm α→ C α β → C α β
¬ : ∀ {β γ} α ↼ β → C β γ → C α γ
Let1 : ∀ {β γ} α ↼ β → C α γ → Tm β → C α γ
Let2 : ∀ {β γ} α ↼ β → Tm α→ C β γ → C α γ

Contexts bind names: the hole can appear under one or several
binders. This is why, in general, a context has distinct outer and in-
ner worlds. A context contains a chain of weak links that connects
the outer and inner worlds: these links are carried by the construc-
tors ¬ and Let2.

Then a context and a term can be paired to produced a term in a
context:

CTm : World→ Set
CTm α = ∃ λ β → C α β × Tm β

It is straightforward to define a function plug from CTm α to
Tm α, which accepts a pair of a context and a term and plugs
the latter into the former. Conversely, one can define a family of
focusing functions (∀ {α} → Tm α → CTm α), which split
a term into a pair of a context and a term. There are several such
functions, according to where one wishes to focus.

The role played by C α β in this existential type is iden-
tical to that played by α ↼ β in the single-name abstraction
∃ λ β → α ↼ β × Tm β. In other words, the type C α β
can be viewed as a new, user-defined type of links between worlds,
and can be used to build elaborate forms of name abstractions.

As another instance of this idea, if one wished to extend our ob-
ject language with ML-style patterns, one would index the type Pat
of patterns with an outer world and an inner world, and one would
use elaborate abstractions of the form ∃ λ β → Pat α β × Tm β.

Finally, the fact that a type can be indexed with several world
parameters can be exploited in other ways. For instance, if one
wished to extend our object language with polymorphism, one
would index the type Tm with two worlds: one for (names of) term
variables, one for (names of) type variables. In other words, worlds
can also serve as disjoint name spaces.

4. Two sound implementations
We have axiomatized a number of notions, including worlds,
names, and links. Now comes the time to give definitions of these
types and terms. We have two versions of these definitions, that is,
two Agda implementations of our library. One is in nominal style:
it is based on atoms. The other is based on well-scoped de Bruijn
indices. Both implementations can be found online [19].

Either of these implementations is well-typed in Agda: this
guarantees that well-typed client programs of our library cannot
go wrong. However, type soundness is not the whole story: we also
wish to prove that well-typed client programs must respect name
abstraction. For each of the two models, we establish this property
via a logical relations argument.

4.1 The nominal model: implementation
We posit a countably infinite set of atoms A, equipped with a notion
of equality. In our Agda implementation, atoms are natural numbers
and we make use of ordering of natural numbers for fresh name
generation; this is apparent in the semantics of strong links below.

In the nominal model, a world is a set of atoms. In the Agda im-
plementation, such as set is represented as a list without duplicates.
A name of type Name α is an atom a together with a proof that a
is a member of the world α.

A weak link of type α ↼ β is an atom a together with a proof
of the equation β ≡ α ∪ {a}. That is, the world β is the union of
the world α and of the atom a. It is important to note that a may or
may not be a member of α: a weak link permits shadowing.

Like a weak link, a strong link of type α ↼→ β includes
an atom a, as well as a proof of the equation β ≡ α ∪ {a}.
Furthermore, it contains a proof of the fact that the natural number a
is a strict upper bound for the set α. This condition reflects the
fact that the name a is fresh for the world α. It implies, and is
stronger than, a 6∈ α. Technically, this extra strength is exploited
in the definition of next↼→, where we need to guarantee that, if a
is fresh for α, then the successors of a form an infinite stream of
names that are fresh for α.

A world inclusion witness of type α ⊆ β has no computational
content: it is just a proof of the set-theoretic inclusion α ⊆ β.

In the nominal model, the operations import⊆, nameOf↼,
weaken, dropName and _↼-commute-⊆_ have no computa-
tional content. _ ?

=Name _ is an atom equality test. export↼ also
involves an atom equality test: it fails if its arguments are equal and
returns its second argument otherwise. The function call next↼→ a b
produces the maximum of the two integers 1 + a and b, so that, if
b is fresh for some world α, then next↼→ a b is fresh for the world
α ∪ {a}.

4.2 The nominal model: logical relations
Although the implementation described above guarantees type
soundness in a traditional sense, this is not sufficient to guarantee
that names are handled in a sound way. Indeed, it would be possible
to extend this implementation of the library with operations that are
well-typed but intuitively do not make sense.

For instance, the above interpretation of worlds validates the
fact that, out of a weak link of type α ↼ β, one can extract a
proof of the inclusion α ⊆ β. Yet, extending the system with an
operation dubious : ∀ {α β} → α ↼ β → α ⊆ β, implemented



as the identity, would be intuitively unsound. To see this, consider
a free atom x and an atom abstraction (¬ y t), whose respective
types are Name α and Tm α. The bound atom y has type α ↼ β,
where β is the inner world of the abstraction. In the presence of
dubious, it would become possible to use import⊆ to cast the atom
x to the type Name β, with undesirable consequences. First, one
would then be able to compare the atoms x and y for equality, so
that the identity of a bound name would become observable: name
abstractions would be violated. Second, one would be able to build
a new name abstraction whose bound atom is y and whose body
contains a free occurrence of x: this would lead to name capture in
the event that x and y happen to be the same atom.

In the following, we remedy this problem by prodiving a richer
interpretation of worlds in a nominal setting. We interpret a world
no longer as a set of atoms, but as a partial bijection between
atoms. On top of this, we carry out a standard logical relations
construction. These logical relations validate all of the operations
of §3, as implemented in §4.1, while rejecting dubious.

The definitions and proofs in this section are informal, in the
sense that they have not been machine-checked.

Definition 4.1 A relation between atoms is a subset of A × A. We
write a1 (α) a2 when the pair (a1, a2) is in the relation α. A
partial bijection between atoms is a relation such that a1 (α) a2

and b1 (α) b2 imply (a1 = b1 ⇐⇒ a2 = b2). �

The following notions are used in the interpretation of weak links
and strong links, respectively.

Definition 4.2 The shadowing extension of a partial bijection α
with an atom pair (b1, b2), written (b1, b2) � α, is the partial
bijection such that a1 ((b1, b2)� α) a2 holds if and only if either
a1 ≡ b1 ∧ a2 ≡ b2 or a1 6≡ b1 ∧ a2 6≡ b2 ∧ a1 (α) a2. �
The domain dom(α) of a relation α is defined as the set of atoms
{a1 | ∃a2, a1 (α) a2}. Its codomain codom(α) is defined analo-
gously. If A is a set of atoms, we write b > A to indicate that the
atom b is a strict upper bound for the set A.

Definition 4.3 The fresh extension of a partial bijection α with
an atom pair (b1, b2), written (b1, b2)α, is defined only if b1 >
dom(α) and b2 > codom(α). When it is defined, (b1, b2)α is the
partial bijection {(b1, b2)} ∪ α. �
When the fresh extension exists, it coincides with the shadowing
extension.

We assume that the host language of our system supports the
construction of logical relations in a standard manner. For instance,
the host language may be System F or System Fω , where logical
relations are well-understood [13]. At every type, two relations are
defined: a relation between values and a relation between terms.
We write v (τ) w when the values v and w are related at type τ ;
we write t (τ) u when the terms t and u are related at type τ . We
assume that the host language provides the definition of these re-
lations at every standard type-theoretic connective (functions; uni-
versal and existential quantifiers; products, sums, unit). We also
assume that equivalence of two terms at type τ is defined, indepen-
dently of τ , in terms of the operational behavior of these terms and
in terms of equivalence of two values at type τ .

We now extend this construction by defining what it means for
two values to be equivalent at our new primitive types: names, weak
links, strong links, and world inclusion witnesses.

Definition 4.4 At base types, the logical relation is defined by:

a1 (Name β) a2 ⇐⇒ a1 (β) a2

a1 (α ↼ β) a2 ⇐⇒ β ≡ (a1, a2)� α
a1 (α↼→ β) a2 ⇐⇒ β ≡ (a1, a2)α

() (α ⊆ β) () ⇐⇒ α ⊆ β �

Two atoms a1 and a2 are related at type Name β if and only
if the pair (a1, a2) is in the partial bijection β. They are related at
type α ↼ β if and only if β is the shadowing extension of α with
the pair (a1, a2). They are related at type α↼→ β if and only if β is
the fresh extension of αwith the pair (a1, a2). Last, two unit values
are related at type α ⊆ β if and only if the relation α is a subset of
the relation β.

Note that a1 (α↼→ β) a2 implies a1 (α ↼ β) a2, which itself
implies a1 (Name β) a2. Thus, it is sound to turn a strong link
into a weak one, and a weak link into a name. That is, it is sound to
implement the operations nameOf↼ and weaken as the identity.
In the case of these two operations, the proof of Theorem 4.5
(below) boils down to this simple remark. Similarly, in view of
this interpretation, the operation dropName, which produces an
inclusion witness out of a strong link, is clearly sound.

We can now point out why a “binary” interpretation (worlds as
partial bijections between atoms) is finer-grained than a “unary”
interpretation (worlds as sets of atoms). Indeed, in order to check
that the operation dubious, implemented as the identity, is sound,
we would need to check that a1 (α ↼ β) a2 implies () (α ⊆ β)
(). That is, we would need to check that β ≡ (a1, a2)� α implies
α ⊆ β. However, due to the possibility of shadowing, this is not in
general the case: this implication is false when a1 ∈ dom(α) and
a2 6∈ codom(β) and when a1 6∈ dom(α) and a2 ∈ codom(β).
It is worth noting that β ≡ (a1, a2) � α does imply dom(α) ⊆
dom(β) and codom(α) ⊆ codom(β). This explains why dubious
seemed safe in a unary interpretation.

There remains to establish the fundamental theorem of logical
relations. The proof of this theorem is provided by the host lan-
guage; we need only extend it with one new case for each of our
primitive operations.

Theorem 4.5 Every primitive operation p of type τ is related to
itself at type τ . �

Proof. For the sake of brevity, we provide only one representative
case, namely the case of export↼. The goal is to show that export↼
is related to itself at type ∀ {α β} → α ↼ β → Name β →
Maybe (Name α). By definition of the logical relation at the
standard connectives (∀, →, Maybe) and at our primitive types
(Definition 4.4), the goal boils down to:

if β ≡ (a1, a2) � α and b1 (β) b2 hold, then the terms
(export↼ a1 b1) and (export↼ a2 b2) are related at type
Maybe (Name α).

Thus, let us assume that α, β, a1, a2, b1, b2 are as above. Now, a
key remark is this: the hypotheses β ≡ (a1, a2)�α and b1 (β) b2,
together with the fact that β is bijective, imply a1 = b1 ⇐⇒
a2 = b2. This remark allows us to distinguish only two cases:
◦ Case a1 = b1 ∧ a2 = b2. Then, the terms export↼ a1 b1 and

export↼ a2 b2 both reduce to nothing. Because the value nothing
is related to itself at type Maybe (Name α), the goal holds.
◦ Case a1 6= b1 ∧ a2 6= b2. Then, the terms export↼ a1 b1 and

export↼ a2 b2 respectively reduce to just b1 and just b2. We must
prove that these two values are related at type Maybe (Name α).
This boils down to proving that b1 and b2 are related by α. It is easy
to check that this goal does follow from the hypotheses b1 (β) b2,
β ≡ (a1, a2)� α, a1 6= b1 and a2 6= b2. �

The intuition behind the above proof case is: the success or failure
of an export↼ operation does not depend on earlier choices of
bound names. More precisely, if we run a single program twice,
with different but related inputs, it is impossible for an export↼
operation to succeed in one run and fail in the other.

One implication of Theorem 4.5 is that “choices of fresh names
do not matter”. Our Agda implementation of the operation next↼→,



which we use to produce fresh names, is of course determinis-
tic. However, one could in principle equip next↼→ with a non-
deterministic semantics, whereby next↼→ a b produces an arbitrar-
ily chosen integer that is greater than or equal to the maximum of
1 + a and b. Under this semantics, Theorem 4.5 still holds: related
programs produce related results. In other words, non-determinism
in the choice of fresh names is not observable by well-typed pro-
grams. One could in fact abandon next↼→ and introduce an expres-
sion fresh, of type ∀ {α} → ∃ λ β → α ↼→ β, which reduces
to an arbitrary atom that dominates the world α. Under this seman-
tics, again, Theorem 4.5 holds. In a type-erasure implementation
of our design, where worlds do not exist at runtime, fresh could be
efficiently implemented using global state (that is, a gensym).

Another implication is that “name abstractions cannot be vio-
lated”. It is perhaps not clear, at first, what this means, especially in
light of the fact that our name abstractions are not primitive: they
are built out of more elementary constructs. One way of formaliz-
ing this statement is to prove that our system permits an adequate
encoding of nominal terms [14]: this guarantees that our name ab-
stractions behave as intended. We do so below (§4.3).

This adequacy result shows that our system is able to encode
a standard notion of α-equivalence. However, one should keep in
mind that our system is more expressive than Pitts’ nominal terms
and nominal types: it offers many types of data structures with
names and binding that do not lie in the image of the encoding.
Logical relations tell us what “α-equivalence” means at these types.

4.3 Adequacy of an encoding of nominal terms
Definition 4.6 The nominal types and nominal terms are:

τ ::= atom | τ × τ | τ + τ | 〈atom〉τ
t ::= a | (t, t) | inji t | 〈a〉t �

For the sake of simplicity, we do not deal with recursive types, but
one could extend our argument to do so. Note that the atom a is not
considered bound in the nominal term 〈a〉t.

Definition 4.7 The free atoms of a nominal term are defined by:

fa(a) = {a} fa((t1, t2)) = fa(t1) ∪ fa(t2)
fa(inji t) = fa(t) fa(〈a〉t) = fa(t) \ {a} �

Definition 4.8 α-equivalence of two nominal terms at a nominal
type is defined as follows:

a ≡ a : atom
t1 ≡ t2 : τ t′1 ≡ t′2 : τ ′

(t1, t
′
1) ≡ (t2, t

′
2) : τ × τ ′

t1 ≡ t2 : τi

inji t1 ≡ inji t2 : τ1 + τ2

(a1 c)t1 ≡ (a2 c)t2 : τ
c # 〈a1〉t1, 〈a2〉t2

〈a1〉t1 ≡ 〈a2〉t2 : 〈atom〉τ

We use a # t as a short-hand for a 6∈ fa(t). We write (a b)t for the
result of swapping all occurrences of the atoms a and b through t.�

Definition 4.9 The encodings of nominal types into our types, and
of nominal terms into our extension of System Fω , are as follows.

JatomKα = Name α
Jτ1 × τ2Kα = Jτ1Kα × Jτ2Kα
Jτ1 + τ2Kα = Jτ1Kα + Jτ2Kα

J〈atom〉τKα = ∃β.(α ↼ β × JτKβ)

dae = a
d(t1, t2)e = (dt1e, dt2e)
dinji te = inji dte
d〈a〉te = pack(a, dte) �

In order to prove that this encoding is adequate, we wish to
prove that two nominal terms are α-equivalent if and only if their
encodings are in the logical relation. α-equivalence of nominal
terms is defined in terms of total atom permutations, while our
worlds are partial atom bijections. The following technical defini-
tion helps bridge the gap.

Definition 4.10 Let A1 and A2 be sets of atoms. Let π1 and π2 be
permutations (that is, total, bijective relations over atoms). Let α
be a world, that is, a partial, bijective relation over atoms. We say
that the permutations π1 and π2 correspond to the world α, with
respect to the domains A1 and A2, if and only if

(π1;π−1
2 ) ∩ (A1 ×A2) = α ∩ (A1 ×A2) �

The following technical lemma shows how our notion of correspon-
dence crosses a name abstraction. The proof of the theorem that
follows is then straightforward.

Lemma 4.11 Let π1 and π2 correspond to α with respect to A1 \
{a1} andA2 \{a2}. Let c be fresh for π1(A1 \{a1}) and π2(A2 \
{a2}). Let β stand for the world (a1, a2)�α. Then, (π1a1 c) ◦π1

and (π2a2 c) ◦ π2 correspond to β with respect to A1 and A2. �
Theorem 4.12 If π1 and π2 correspond to α with respect to fa(t1)
and fa(t2), then the following two propositions are equivalent:

π1t1 ≡ π2t2 : τ (α-equivalence of nominal terms)
dt1e (JτKα) dt2e (logical relation between terms) �

The proofs appears in the extended version of this paper [20]. As
a corollary, if a nominal term t has nominal type τ , and if α is a set
of atoms that includes fa(t), then dte has type JτKα in our unary
interpretation (§4.1). Furthermore, we have:

Corollary 4.13 Let t1 and t2 be nominal terms of nominal type τ
such that fa(t1) = fa(t2) = ∅. Then, t1 and t2 are α-equivalent
if and only if their encodings are related with respect to the empty
world. That is, t1 ≡ t2 : τ holds if and only if dt1e (JτKø) dt2e
holds. �
Corollary 4.14 Let t1 and t2 be nominal terms of nominal type τ
such that fa(t1) = fa(t2) = ∅. If t1 ≡ t2 : τ holds, then dt1e and
dt2e are observationally equivalent at type JτKø. �

Corollary 4.14 shows that our programming language respects
object-level α-equivalence. In other words, our name abstractions
behave as intended: the identity of the bound name cannot be
observed.

The reverse implication – if t1 and t2 are not α-equivalent, then
their encodings can be distinguished by some well-typed observer
– can be established by implementing an α-equivalence test within
the programming language (see §5.1) and by proving that it is
correct. We have not yet carried out this proof.

4.4 The de Bruijn model: implementation
In the de Bruijn model, a world is just a natural number n, while a
name is just a natural number in the interval [0, n). That is, World
is N, and Name is Fin, where Fin n is the type of the natural
numbers that are less than n. In this model, weak and strong links
are the same. Indeed, contrary to the nominal model, there is no
shadowing: it is impossible for a new binding to hide a previous
one. A link of type α ↼ β or α ↼→ β has no computational
content: it is just a proof of the equation β ≡ α + 1. On
the other hand, a world inclusion witness of type α ⊆ β does
have computational content: it is a natural number k such that the
equation β ≡ α + k holds. The integer k represents the amount by
which one must shift when importing a name from α into β.

Most operations have straightforward semantics: _ ?
=Name_ is an

integer equality test (in fact, it is an equality test at type Fin n);



export↼ is the predecessor function, which fails if applied to the
index 0; import⊆ and ⊆-trans are integer addition; nameOf↼ is
the constant function zero; and dropName is the constant function
one. The functions weaken, next↼→ and _↼-commute-⊆_ have
no computational content.

In the de Bruijn model, importing or exporting a term has a cost.
Importing requires copying the term to increment its free names,
while exporting requires copying and decrementing. (In the nom-
inal model, in contrast, importing is the identity, while exporting
requires an occurs check and is the identity when successful. The
price to pay for this is that explicit renamings can be necessary.)
Fortunately, thanks to the expressiveness of the type system, the
programmer is in control of the import/export machinery, and has
access to many of the classic tricks for dealing efficiently with de
Bruijn indices. It is possible, for instance, to delay certain imports,
and to cheaply combine multiple imports into one, since⊆-trans is
just integer addition.

4.5 The de Bruijn model: logical relations
Like the nominal model, the de Bruijn model is implemented [19]
in Agda. This guarantees that our de Bruijn indices range over the
expected intervals, and, more generally, that a well-typed client
program cannot go wrong. However, as in the nominal model, this
is not sufficient to guarantee that our implementation is correct in
an intuitive sense. Again, there are operations that are well-typed
in this unary interpretation of the de Bruijn model, yet do not make
sense.

For instance, imagine import⊆ is implemented as λ x → x,
instead of integer addition. This amounts to forgetting to shift, and
is clearly a mistake. Yet, this version of import⊆ is well-typed,
because if x has type Fin m then, for every n greater than or equal to
m, x also has type Fin n. (This argument is slightly over-simplified.
In reality, a coercion is needed: see Data.Fin.inject+ in Agda’s
standard library.)

As another instance, imagine export↼ is implemented as the
function that fails when applied to the index 0 and returns 0 other-
wise. Again, this is meaningless: this function is not even injective!
Yet, this version of export↼ is well-typed, because if x has type
Fin m then 0 has type Fin m.

In light of these examples, we claim that, perhaps contrary to
popular belief, well-scopedness of de Bruijn indices is not good
enough: it does not guarantee that indices are correctly adjusted
where needed.

Again, our solution lies in the construction of logical relations
that validate our implementation, while rejecting the incorrect im-
plementations mentioned above.

At this point, the reader may ask: do logical relations have any-
thing non-trivial to say about the de Bruijn model? In the nominal
model, logical relations were used to compare two program runs
and to show that their outcome is insensitive to choices in the data
representation (in particular, choices of bound names) and in the
semantics (choices of fresh names). In the de Bruijn model, how-
ever, both bound names and fresh names are chosen in a canonical
manner, so one might think that there is no interesting comparison
to be made. In fact, there is. De Bruijn’s representation does carry
an arbitrary component in its choice of free names. The logical re-
lations argument tells us that a well-typed program is insensitive to
choices of free names: if one applies some permutation to the free
names in its input, one observes the same permutation in the free
names of its output. This property is stronger than well-scopedness
of de Bruijn indices; in particular, it is not satisfied by the incorrect
implementations mentioned above.

As in the nominal case §4.2, we view a world as a partial bijec-
tion between names. This time, names are de Bruijn indices, that is,
natural numbers. In the de Bruijn model, there is no shadowing, so

there is no analogue of shadowing extension (Definition 4.2). The
analogue of fresh extension (Definition 4.3) is the following:

Definition 4.15 The shift of a partial bijection α, written α↑, is a
partial bijection, characterized as follows:

α↑ def
= {(0, 0)} ∪ {(i1 + 1, i2 + 1) | (i1, i2) ∈ α} �

We write α↑k for the result of shifting the world α k times.

Definition 4.16 At base types, the logical relation is defined by:

i1 (Name β) i2 ⇐⇒ i1 (β) i2
() (α ↼ β) () ⇐⇒ β ≡ α↑
() (α↼→ β) () ⇐⇒ β ≡ α↑
k (α ⊆ β) k ⇐⇒ β ≡ α↑k �

Theorem 4.17 Every primitive operation p of type τ is related to
itself at type τ . �

5. Programmable operations
Several of our primitive operations, such as _ ?

=Name_, export↼, and
import⊆, operate upon names only. This is a good thing, insofar as
it simplifies the meta-theory of our system. However, it is desirable
to lift these operations to user-defined data types, such as Tm, so
that user-defined terms can be compared for equality (up to α-
equivalence) and exported or imported from one world into another.
Fortunately, this can be done within the system: for a large class
of algebraic data types, these generalized forms of the primitive
operations can be programmed up. We now explain how to do so in
the particular case of Tm. Where details are omitted, the reader is
referred to the code [19].

5.1 Deciding α-equivalence
We sketch how to implement a function that tests whether two
terms are α-equivalent. As before (§3), we use environments repre-
sented as chains of weak links. We modify the function export?↼
(§3) to obtain a new function, index?↼, which accepts a name and
classifies it as either free or bound in the environment. In the for-
mer case, like export?↼, index?↼ produces a copy of the name at
a more precise type. In the latter case, it converts the name to a de
Bruijn index.

index?↼ : ∀ {α β} → α ?↼ β → Name β → Name α ] N
Thus equipped, it is straightforward to write a recursive comparison
function of type ∀ {α β γ} → (α ?↼ β) × (α ?↼ γ) →
Tm β → Tm γ → Bool. At abstractions, the two environments
are extended with the two bound names at hand. At variables,
index?↼ is used to classify each of the two names at hand, and the
results produced by index?↼ are compared for equality—which is
possible because both have type Name α ] N.

Once applied to two empty environments, the comparison func-
tion has type ∀ {α} → Tm α→ Tm α.

5.2 A generic traversal function
We are interested in several operations that move a term from one
world to another. These operations are implemented by traversing
the term and building a new term. Much of the traversal code can
be shared between these operations, and it is beneficial to do so, as
this sheds a more abstract light on the traversal.

In general, a traversal function has a type of the following form:

Traverse : (_ _ : Rel World) (M : Set→ Set)
(F : World→ Set)→ Set

Traverse _ _ M F = ∀ {α β} → α β → F α→ M (F β)

The parameter F describes the data structure that is being traversed
and copied: for instance, F could be Tm. The parameter M is



typically either the identity or the Maybe monad. The former is
used when implementing an operation that cannot fail; the latter is
used when implementing an operation that can fail. More generally,
M can be an arbitrary applicative functor [11]. The parameter
_ _ indicates what kind of connection is expected between the
world α, which describes the input data structure, and the world
β, which the output data structure inhabits. For instance and as a
first approximation, when implementing an export operation along
a weak link, this parameter could be the type constructor for weak
links, reversed, flip _↼_. In reality, the implementation of an
export operation needs to maintain an environment that keeps track
of the binders that have been entered. In general, α β is the type
of this environment, so it is more complex than just a single link.
Still, it helps to think of it as the type of an abstract link between
the input and output worlds.

In the implementation of a traversal function, upon entering a
name abstraction, we need this abstract link, whose type is α β,
to commute with the weak link that represents the binding occur-
rence of the abstraction, whose type is α ↼ γ. The following two
definitions respectively describe a general commutative diagram
and the particular diagram that is needed here:

ComposeCommute : (_ 1_ _ 2_ : Rel World)→ Set
ComposeCommute _ 1_ _ 2_

= ∀ {α β γ} → α 1 β → β  2 γ
→ ∃ λ δ → α 2 δ × δ  1 γ

Comm : (_ _ : Rel World)→ Set
Comm _ _ = ComposeCommute (flip _↼_) _ _

We now present a generic traversal function for the type Tm. In
addition to the above parameters, it requires a function onName,
which describes what to do at non-binding occurrences of names.

The traversal is straightforward. The parameter Γ is the abstract
link between the worlds α and β. At variables, onName is used.
At abstractions, the commutative diagram comm is used. This
produces a new abstract link Γ’ between α’ and β’, where α’ is the
inner world of the abstraction that is being deconstructed, and β’
is the inner world of the abstraction that is being constructed. This
new link is used in the recursive call. The diagram also produces a
new weak link x’, of type β ↼ β’, which is used in the construction
of the new abstraction. The applicative functor machinery is used
everywhere, so as to perform effect propagation behind the scenes.

module TraverseTm
{M } (appli : Cat.RawApplicative M)
(comm : Comm )
(onName : Traverse M Name) where

open Cat.RawApplicative appli

traverseTm : Traverse M Tm
traverseTm Γ (V x)

= V 〈$〉 onName Γ x
traverseTm Γ (t · u)

= _·_ 〈$〉 traverseTm Γ t ~ traverseTm Γ u
traverseTm Γ (¬ x t)

with comm x Γ
... | ( ,Γ’, x’)

= ¬ x’ 〈$〉 traverseTm Γ’ t
traverseTm Γ (Let x t u)

with comm x Γ
... | ( ,Γ’, x’)

= Let x’ 〈$〉 traverseTm Γ t ~ traverseTm Γ’ u

Thanks to the generic programming facilities of a language with
dependent types, it should be possible to implement this generic
traversal not just for Tm, but for any algebraic data type that is
composed of unit, pairs, sums, names, and name abstractions. We
have not yet done so.

5.3 Applications of the generic traversal
Generalized import Whereas the primitive operation import⊆
moves a single name from one world to another, a generalized
import function moves a data structure from one world to an-
other. For instance, a generalized import function for Tm has type
∀ {α β} → α ⊆ β → Tm α → Tm β. In other words, this
function witnesses the fact that Tm is covariant in its index.

To implement such a function, we instantiate the generic traver-
sal function traverseTm. Because importing never fails, an appro-
priate applicative functor is the identity. The type of abstract links
_ _ is instantiated with _⊆_, the type of world inclusion wit-
nesses. The parameters comm and onName are instantiated with
the primitive operations import⊆ and _↼-commute-⊆_.

Generalized export A generalized export function for Tm has
type ∀ {α β} → α ↼ β → Tm β → Maybe (Tm α). It fails
if its first argument, a name, occurs free in its second argument,
a term. Otherwise, it returns a copy of its second argument at the
outer world α.

We found generalized export more difficult to implement than
generalized import. The reason is, the commutative diagram that
we would like to use, which involves two weak links and has type
Comm (flip _↼_), appears to be unsound: it is not validated by
our logical relations. We do have a work-around, but it involves
freshening, that is, replacing the bound names of the input term
with fresh names.

Again, we instantiate the generic traversal function traverseTm.
Because exporting can fail, an appropriate applicative functor is
Maybe. The type of abstract links α  β is instantiated with
Fresh β × (Name α → Maybe (Name β)). This means that,
during the traversal, we maintain: (i) a fresh name generator for the
output world β; and (ii) an environment, that is, a partial mapping
of names in the input world α to names in the output world β. Upon
entering an abstraction that binds some name x, this environment is
extended by mapping x to a fresh name. (This is enough to imple-
ment the required commutative diagram, of type Comm _ _,
for this particular definition of _ _.) Upon reaching a variable y,
the environment is consulted. During this lookup, one of two situa-
tions arises. If y is bound in the environment, then the correspond-
ing fresh name is returned. Otherwise, y is a free name of the term
that we are attempting to export, so y is submitted to the primitive
export↼ operation (which may fail), whose result is returned.

Checking whether a term is closed A closed term inhabits the
empty world, and inhabits every world. That is, both of the types
Tm ø and ∀ {α} → Tm α accurately describe closed terms. These
types are interconvertible. To convert Tm ø into ∀ {α} → Tm α,
one uses the subtyping axiom ø-bottom-⊆ as well as the fact that
Tm is covariant in its index. To convert ∀ {α} → Tm α into Tm ø,
one instantiates α with ø.

Terms that admit the above types are particularly easy to use,
because, thanks to polymorphism, they can be freely moved to
any world. Of course, the flip side of the coin is, it is some-
what difficult to create such terms. To help in this task, a useful
tool is a function closeTm that checks at runtime whether a term
is closed and, when it succeeds, returns a term that is statically
known to be closed. Such a function should have type ∀ {α} →
Tm α → Maybe (Tm ø), or equivalently, ∀ {α β} → Tm α →
Maybe (Tm β).

At the base type Name, such a function is easy to implement.
The function const nothing, which always fails, fits the bill: it has
type ∀ {α β} → Name α → Maybe (Name β). Whereas an
export link fails at one particular name and lets every other name
through, this function can be viewed as a link that always fails.

With this in mind, implementing closeTm is simple. The con-
struction is identical to that of the generalized export function



above, except in the setup phase, where an export link is replaced
with a link that always fails.

6. Example: normalization by evaluation
As an advanced example, we show how to express a normalization
by evaluation algorithm in our system. This algorithm has been
previously used as a benchmark by several researchers [10, 14, 22].
The challenge lies in the way the algorithm mixes computational
functions, name abstractions, and fresh name generation.

The object language of interest is the pure λ-calculus. The al-
gorithm exploits two different representations of object-level terms,
which are respectively known as syntactic and semantic representa-
tions. Because these representations differ only in their treatment of
name abstractions (we do not ensure normal forms for conciseness
reasons), they can be given a common definition, which is parame-
terized over the representation of abstractions:

module M (Abs : (World→ Set)→World→ Set) where
data T α : Set where
V : Name α→ T α
¬ : Abs T α→ T α
_·_ : T α→ T α→ T α

The parameter Abs has kind (World → Set) → (World → Set):
it is an indexed-type transformer.

In order to obtain the syntactic representation, we instantiate
Abs with the abstractions that we have used throughout this paper:
an abstraction is an existential package of a weak link and of a term
that inhabits the inner world. This yields the type Term of syntactic
terms.

SynAbs : (World→ Set)→World→ Set
SynAbs F α = ∃ λ β → α ↼ β × F β

open M SynAbs renaming (T to Term)

In order to obtain the semantic representation, we instantiate Abs
with a different notion of abstraction, in the style of higher-order
abstract syntax: an abstraction is a computational function, which
substitutes a term for the bound name of the abstraction. This yields
the type Sem of semantic terms. Sem is not an inductive data
type; fortunately, with –n o-positivity-check Agda accepts this
type definition, at the cost of breaking strong normalization.

SemAbs : (World→ Set)→World→ Set
SemAbs F α = ∀ {β} → α ⊆ β → F β → F β

open M SemAbs renaming (T to Sem)

It is important to note that our semantic name abstractions involve
bounded polymorphism in a world: we define SemAbs F α as
∀ {β} → α ⊆ β → F β → F β, as opposed to the more
naïve F α→ F α. This provides a more accurate and more flexible
description of the behavior of substitution. Furthermore, this has
the important effect of making SemAbs (and Sem) covariant with
respect to the parameter α, which would not be the case with the
naïve definition. In other words, it is possible to define a general-
ized import operation for semantic terms:

impSem : ∀ {α β} → α ⊆ β → Sem α→ Sem β
impSem ⊆w (V a) = V (import⊆ ⊆w a)

impSem ⊆w (¬ f) = ¬ (λ ⊆w’ v→ f (⊆-trans ⊆w ⊆w’) v)
impSem ⊆w (t · u) = impSem ⊆w t · impSem ⊆w u

At a semantic abstraction, no recursive call is performed, because
the body of the abstraction is opaque: it is a computational func-
tion f. Instead, we exploit the transitivity of world inclusion and
build a new semantic abstraction that inhabits the desired world.

The normalization by evaluation algorithm is parameterized
with a representation of environments. The type of environments
takes the form Env A α β, where A is the type of the data carried
in the environment and α and β are the outer and inner worlds of

the environment. Environments must offer the following constants
and operations: empty (emptyEnv), lookup (lookupEnv); exten-
sion (_,_7→_); map (mapEnv); covariance of Env with respect to
its parameter α (importEnv⊆). These requirements are expressed
by the type ImportableEnvPack, whose definition is omitted.

open ImportableEnvPack envPack

The algorithm uses an environment whose type takes the form
Env (Sem α) α β. To a name, such an environment associates a
semantic term that lies outside the scope of the environment. This
type is, again, covariant in α, as witnessed by the following import
function:

impEnv : ∀ {α β γ} → α ⊆ β → Env (Sem α) α γ
→ Env (Sem β) β γ

impEnv ⊆w = importEnv⊆ ⊆w ◦ mapEnv (impSem ⊆w)

The first part of the algorithm evaluates a syntactic term within
an environment to produce a semantic term. When evaluating a ¬-
abstraction, we build a semantic abstraction, which encapsulates a
recursive call to eval. The bounded polymorphism required by the
definition of semantic abstractions forces us to import the environ-
ment Γ via impEnv.

app : ∀ {α} → Sem α→ Sem α→ Sem α
app (¬ f) v = f ⊆-refl v
app n v = n · v
eval : ∀ {α β} → Env (Sem α) α β → Term β → Sem α
eval Γ (V x) = [V, id ] (lookupEnv Γ x)
eval Γ (t · u) = app (eval Γ t) (eval Γ u)
eval Γ (¬ ( , a, t))

= ¬ (λ ⊆w v→ eval (impEnv ⊆w Γ [a 7→ v ]) t)

The second part of the algorithm reifies a semantic term back into
a term. When reifying a semantic abstraction, we build a syntactic
abstraction. This requires generating a fresh name, and leads us to
parameterizing reify with a fresh name generator.

reify : ∀ {α} → Fresh α→ Sem α→ Term α
reify g (V a) = V a
reify g (n · v) = reify g n · reify g v
reify g (¬ f) = ¬ ( ,weakOf g, t)

where open FreshPack
t = reify (nextOf g) (f (⊆Of g) (V (nameOf g)))

Evaluation under an empty environment, followed with reification,
yields a normalization algorithm. This algorithm works with open
terms: its argument, as well as its result, are terms in an arbitrary
world α.

nf : ∀ {α} → Fresh α→ Term α→ Term α
nf g = reify g ◦ eval emptyEnv

7. Related work
The difficulty of programming with, or reasoning about, names and
binders has been known for a long time. It has recently received a
lot of attention, due in part to the POPLMARK challenge [4]. De-
spite this attention, the problem is still largely unsolved: according
to Guillemette and Monnier, for instance, “none of the existing rep-
resentations of bindings is suitable” [9].

In the following, we review several programming language de-
signs that are intended to facilitate the manipulation of names and
binders. By lack of space, this review cannot be exhaustive: we fo-
cus on relatively recent related work.

Distinctions One traditionally distinguishes several broad ap-
proaches to the problem, which employ seemingly different tools,
namely: atoms and atom abstractions; well-scoped de Bruijn in-
dices; higher-order abstract syntax. We believe that this distinction
can be artificial. In fact, our work presents strong connections with



all three schools of thought. Perhaps more important are the fol-
lowing questions:

• What properties are enforced by the system? FreshML [22]
offers an adequate encoding of nominal terms, but does not
prevent a newly generated atom from escaping its scope. Sys-
tems based on well-scoped de Bruijn indices enforce the invari-
ant that every name refers to some binding site; however, as
we have pointed out (§4.5), this alone does not imply that in-
dices are correctly adjusted where needed. In systems based on
higher-order abstract syntax, and in Pure FreshML [18], name
manipulation is hygienic by design: this is built in the syntax
and semantics of the programming language. In the present pa-
per, hygiene is not built in. We have used logical relations to
find out (and prove) which properties can be expected of a well-
typed program.
• Does the system offer “substitution for free”, and if so, at which

types? Does it have separate data and computation layers? In
FreshML, Pure FreshML [18] and the present work, the answer
to both questions is negative. In several systems in the tradi-
tion of higher-order abstract syntax, including Elphin [21], Del-
phin [16, 17] and Beluga [12], the answer to both questions is
positive. In Licata and Harper’s work [10], substitution is avail-
able for free at many types, even though data and computation
are not separated.
• Do names inhabit a fixed type, or do they inhabit every type?

Usually, systems that provide some form of substitution for
free [10, 12, 16, 17, 21] allow names to inhabit every type, while
so-called nominal systems [18, 22] as well as the present work
offer a separate type of names.
• How does the system keep track of the context or world in which

a name makes sense? In Pure FreshML, there is effectively just
one world, within which every name makes sense; the proof
obligations guarantee that no confusion can arise. In Elphin,
Delphin, or in Licata and Harper’s system, the meaning of types
is relative to a “current context”, and a number of modalities are
provided to discard the current context, extend it with one new
name, etc. In Beluga, contexts are explicit: a data-layer type,
once annotated with a context, becomes a computation-layer
type. In the present paper, worlds are explicit, and are built into
algebraic data type definitions by the programmer.
• Which very high-level operations does the semantics of the pro-

gramming language involve? The semantics of FreshML and
Pure FreshML involve renaming. The semantics of Elphin, Del-
phin, and Beluga involve higher-order matching. In the present
work, as well as in Licata and Harper’s work, no costly opera-
tions are built into the semantics; high-level operations, such as
our import and export operations, are obtained (at many, but not
all, types) via generic programming.

FreshML and Pure FreshML FreshML [22] extends ML with
primitive types for names (known as atoms) and name abstractions.
The semantics of FreshML dictates that pattern matching against
a name abstraction silently replaces the bound atom with a fresh
atom. This makes it easy to write programs in a style that matches
informal mathematical practice. FreshML satisfies a correctness
property analogous to our Corollary 4.14 – name abstractions can-
not be broken. However, FreshML is unsafe: it is possible for a
name to escape its scope. Put another way, FreshML is impure:
name generation is an observable side effect.

Pure FreshML [18] imposes additional proof obligations, which
ensure that freshly created atoms do not escape their scope, and
correspond to Pitts’ freshness condition for binders [14]. Because
these proof obligations are expressed in a specialized logic, they
can be discharged automatically. Because it is safe, Pure FreshML

can be implemented either using atoms (like the original FreshML)
or using de Bruijn indices. This is an implementation choice, which
the programmer need not know about.

The present paper can be viewed as a different way of construct-
ing a safe variant of FreshML. Whereas Pure FreshML supplements
ordinary ML types with logical assertions, we explore the use of
richer types and do not rely, for the time being, on a separate logic.

In Pure FreshML, name abstraction is a primitive notion, and
the fact that deconstructing an abstraction automatically freshens
the bound atom is used to guarantee that all terms effectively live
in a single world. Here, in contrast, name abstraction is explained
in terms of more basic notions; it is possible to deconstruct a name
abstraction without substituting a fresh name for the bound name.
This leads to a finer-grained understanding of binding, and possibly
to greater runtime efficiency: because our nominal compilation
scheme permits shadowing, there is, in some cases, no need to pay
a price to enforce the property that all names are distinct.

Nominal System T [15] follows the tradition of FreshML and so
guarantees that name abstractions are not violated. However com-
pared to Pure FreshML and our system it does not statically enforce
that names do not escape their scope. Instead the new construct is
introduced to represent such escaped names, dynamically. This is
akin to nan in floating point computation, they are not numbers
but they still have the float type and result of mathematically ill
founded operations like dividing by zero. So in some sense names
do escape their scope but are dynamically turned into harmless val-
ues. Whether such programs should have a semantics or should
simply be statically rejected is a matter of design.

Well-scoped de Bruijn indices It is by now well-known that type-
theoretic machinery (such as nested algebraic data types, general-
ized algebraic data types, or dependent types) can be used to ensure
that every de Bruijn index remains within range [1, 5]. In fact, de-
pendent types can be used to encode not only the lexical scoping
discipline, but also the type discipline of an object language: see,
for instance, Chen and Xi [6] and Chlipala [7]. However, de Bruijn
indices are, by nature, very low-level: it is desirable to build more
abstract representations of top of them. For instance, Donnelly and
Xi [8] define an algebraic data type of terms that is based on well-
scoped de Bruijn indices, but is indexed with a higher-order abstract
syntax representation of terms. Licata and Harper’s system [10] is
implemented on top of well-scoped de Bruijn indices. The sys-
tem presented in this paper can be compiled down to de Bruijn
indices, and could thus be viewed as an abstraction layer on top
of well-scoped de Bruijn indices. However, as we have pointed out
(§4.5), our system offers a stronger guarantee than raw well-scoped
de Bruijn indices do. It does not just guarantee that every index is
within range: it also guarantees that a well-typed program compo-
nent is insensitive to permutations of the free indices in its input. In
a scenario where programs are type-checked but not proved correct,
this extra guarantee could be welcome.

Licata and Harper’s system [10] differs from ours in several
ways. Perhaps most notably, Licata and Harper aim to provide sub-
stitution for free when possible, whereas we don’t; and they expose
the use of well-scoped de Bruijn indices to the programmer, who
must sometimes reason in terms of zero and successor, whereas we
do not reveal the nature of names, thus permitting multiple compi-
lation schemes.

This said, there are numerous similarities between the two sys-
tems. Both keep track of the context, or world, within which each
name makes sense. Both offer flexible ways of parameterizing or
quantifying types over worlds. Both offer ways of moving data
from one world to another: Licata and Harper’s weakening and
strengthening respectively correspond to our import and export op-
erations. Both systems support first-class computational functions.



Not all functions can be imported or exported, but some can: for
instance, in both systems, the example of normalization by evalua-
tion [20], which requires importing a function into a larger world,
is made type-correct by planning ahead and making this function
polymorphic with respect to an arbitrary world extension.

Elphin, Delphin, Beluga [12, 16, 17, 21] are closely related to
one another in several ways. They separate the data and compu-
tation layers, which implies that they do not support first-class
functions. At the data level, they provide substitution and higher-
order matching as primitive operations. This ambitious approach
can eliminate some boilerplate code, at the cost of a complex meta-
theory. By contrast, the meta-theory of our proposal is extremely
simple, as it only extends an existing logical relations argument
with a few new primitive types and operations.

Moving across representations It is arguably desirable to be able
to offer several choices of representation within a single system,
and to be able to migrate from one representation to another. For in-
stance, our implementation of normalization by evaluation (§6) il-
lustrates how to move back and forth between “syntactic” name ab-
stractions and “semantic” name abstractions in the style of higher-
order abstract syntax. Atkey and co-authors [2, 3] investigate how
to move back and forth between higher-order abstract syntax and
de Bruijn indices. The translation out of higher-order abstract syn-
tax produces well-scoped de Bruijn indices, but the proof of this
fact is meta-theoretic. Atkey uses Kripke logical relations to argue
that the current world at the time of application of a certain func-
tion must be larger than the world at the time of construction of this
function. This seems somewhat related with our use of bounded
polymorphism in the definition of semantic name abstractions (§6).
An exact connection remains to be investigated.

8. Future work
We have presented an abstract programming model, together with
two concrete implementations, in nominal style and de Bruijn style.
We have argued separately about the correctness of each imple-
mentation. In particular, we have proved that the nominal imple-
mentation allows an adequate encoding of nominal terms. Ideally,
however, the nominal term encoding should be proved adequate
directly with respect to the abstract model, not with respect to its
implementations. We do not yet know how to do this, because our
abstract model does not have a semantics. A related question is:
how to carry out specifications and proofs of programs with respect
to our abstract programming model?
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