
Programming with permissions in Mezzo

François Pottier
INRIA

francois.pottier@inria.fr

Jonathan Protzenko
INRIA

jonathan.protzenko@ens-lyon.org

Abstract
We present Mezzo, a typed programming language of ML lineage.
Mezzo is equipped with a novel static discipline of duplicable and
affine permissions, which controls aliasing and ownership. This
rules out certain mistakes, including representation exposure and
data races, and enables new idioms, such as gradual initialization,
memory re-use, and (type)state changes. Although the core static
discipline disallows sharing a mutable data structure, Mezzo offers
several ways of working around this restriction. One of them, a dy-
namic ownership control mechanism which we baptize “adoption
and abandon”, is new.

1. Introduction
Programming with mutable, heap-allocated data structures is diffi-
cult. In many typed imperative programming languages, including
Java, C#, and ML, the type system keeps track of the structure of
objects, but not of how they are aliased. As a result, a program-
ming mistake can cause undesired sharing, which in turn leads to
breaches of abstraction, invariant violations, race conditions, and
so on. Furthermore, the fact that sharing is uncontrolled implies
that the type of an object must never change. This forbids certain
idioms, such as delayed initialization, and prevents the type system
from keeping track of the manner in which objects change state
through method calls. In order to work around this limitation, pro-
grammers typically use C# and Java’s null pointer, or ML’s option
type. This implies that a failure to follow an intended protocol is
not detected at compile time, but leads to a runtime error. In short,
there is a price to pay for the simplicity of traditional type systems:
the bugs caused by undesired sharing, or by the failure to follow an
object protocol, are not statically detected.

This paper presents the design of a new programming language,
Mezzo, which attempts to address these issues. One motivating
principle behind the design of Mezzo is that one should be able
to express precise assertions about the current state of an object or
data structure. The type system should keep track of state changes
and forbid using an object in a manner that is inconsistent with
its current state. An example is a socket that moves from state
“ready”, to “connected”, then to “closed”. The “close” function,
for instance, should be invoked only if the socket is currently in
the state “connected”, and changes its state to “closed”. Another
example is a collection, which must not be accessed while an
iterator exists, but can be used again once iteration is over.

[Copyright notice will appear here once ’preprint’ option is removed.]

Although state and state change play an important role in many
programs, no mainstream programming language builds these no-
tions into its static discipline. External tools must be used, such as
typestate checking tools [13, 5, 6] or tools for constructing proofs
of programs, based for instance on separation logic [4, 20] or on
the Spec# methodology [3]. Instead, we explore the possibility of
reasoning about state within the type system. This has well-known
potential benefits. A property that is expressed as a type is checked
early, often, and at little cost. Furthermore, we believe that, in the
future, such a type system can serve as a strong foundation for per-
forming proofs of programs.

Obviously, if two “principals” separately think that “the socket s
is currently connected”, and if one of them decides to close this
socket, then the other will be left with an incorrect belief about s.
Thus, precise reasoning about state and state changes requires that
information about a mutable object (or data structure) be recorded
in at most “one place” in the type system. In Mezzo, this place
is a permission. Permissions keep track not only of the structure
of data, as does a traditional type system, but also of must-alias
and must-not-alias (i.e. equality and disjointness) information. Like
a separation logic assertion [28], a permission has an ownership
reading: to have access to a description of a part of the heap is to
own this part of the heap. Because “to describe is to own”, we need
not explicitly annotate types with owners, as done in Ownership
Types [10] or Universe Types [14].

We do not think of the “type” of an object and of its “state” as
two distinct notions: a permission describes both at once. Whereas
previous work on permissions [5] distinguishes between a fixed
type structure and “permissions” that evolve with time, in Mezzo,
both “type” and “state” can change over time. This yields greater
expressiveness: for instance, gradual initialization and memory re-
use become possible. This also yields greater simplicity and con-
ciseness: for instance, when we write polymorphic code that ma-
nipulates a list, a single type variable a denotes not only “what” the
list elements are (e.g., sockets) but also in what “state” they are and
to what extent we “own” them.

The choices described above form our basic design premises.
Mezzo can be viewed as an experiment, whose aim is to determine
to what extent these choices are viable. Beyond these decisions,
we strive to make the language as simple as possible. Mezzo is
a high-level programming language: we equip it with first-class
functions, algebraic data types, and require a garbage collector. We
could have chosen classes and objects instead of (or in addition
to) algebraic data types; this could be a topic for future research.
We equip Mezzo with a simple distinction between duplicable
permissions (for immutable data) and exclusive permissions (for
mutable data). Although more advanced varieties of permissions
exist in the literature, including read-only views of mutable data
and fractional permissions [7], we wish to evaluate how far one
can go without these advanced notions; if desired, they could in
principle be added to Mezzo.

1 2013/5/7

By default, Mezzo’s permission discipline imposes a restrictive
aliasing regime: the mutable part of the heap must form a forest.
Mezzo offers several mechanisms for evading this restriction. One,
adoption and abandon, is new. It allows arbitrary aliasing patterns
within a region of the heap and achieves soundness via dynamic
checks. We describe it in detail in §7. The second mechanism is
Boyland’s nesting [7]. It can be viewed as a form of adoption
and abandon that requires no runtime checks but is (for many
purposes) less powerful. The last mechanism is locks in the style
of concurrent separation logic [25, 18, 19, 8].

Mezzo’s static discipline has been formally defined and me-
chanically proved sound1. The formalization, which is available on-
line [26], includes adoption and abandon, but does not (at present)
cover nesting, locks, or concurrency. The statement of soundness
guarantees that “well-typed programs do not go wrong”, except
possibly when the dynamic check involved in the “abandon” oper-
ation fails. In a concurrent extension of Mezzo, it would in addition
guarantee that “well-typed programs are data-race-free”.

A prototype type-checker has been implemented and is publicly
available [27]. Several small libraries, totaling a few thousand lines
of code, have been written, and are also available online [27]. They
include immutable data structures (lists), mutable data structures
(lists, doubly-linked lists, binary search trees, hash tables, resizable
arrays, and FIFO queues, see §7), persistent data structures imple-
mented via imperative means (suspensions, persistent arrays), and
a few algorithms (memoization; graph search). At the time of this
writing, an interpreter is available, and a simple compiler (which
translates Mezzo down to untyped OCaml) is being developed.

The paper begins with a motivating example (§2), which cannot
be type-checked in ML, and which serves to informally illustrate
Mezzo’s permission discipline. Then, we define the syntax of types,
permissions, and expressions (§3) and informally explain the own-
ership reading of permissions for immutable and mutable data (§4).
We present the typing rules (§5) and introduce a few syntactic con-
ventions that make the surface language more palatable (§6). We
explain adoption and abandon, illustrate them with a second exam-
ple (§7), and discuss nesting and locks more briefly (§8). Finally,
we explain where Mezzo lies in the design space and compare it
with some of the previous approaches found in the literature (§9).

2. Mezzo by example
Figure 1 presents code for the concatenation of two immutable lists.
This example showcases several of Mezzo’s features, and allows us
to explain the use of permissions. We review the code first (§2.1),
then briefly explain how it is type-checked (§2.2 and §2.3).

2.1 Code
Our purpose is to write code that concatenates two immutable
lists xs and ys to produce a new immutable list. The traditional,
purely functional implementations of concatenation have linear
space overhead, as they implicitly or explicitly allocate a reversed
copy of xs. Our implementation, on the other hand, is written
in destination-passing style, and has constant space overhead.
Roughly speaking, the list xs is traversed and copied on the fly.
When the end of xs is reached, the last cell of the copy is made to
point to ys.

The append function (Figure 1, line 23) is where concatenation
begins. If xs is empty, then the concatenation of xs and ys is
ys (line 27). Otherwise (line 29), append allocates an unfinished,

1 The formalization concerns a slightly lower-level language, Core Mezzo.
In Core Mezzo, fields are numbered, whereas in Mezzo they are named and
field names can be overloaded. At present, Core Mezzo is missing some
of the features of Mezzo, including parameterized algebraic data types and
mode constraints. We hope to add them in the future.

1 data list a =
2 Nil | Cons { head: a; tail: list a }
3

4 mutable data mlist a =
5 MNil | MCons { head: a; tail: list a }
6

7 val rec appendAux [a] (
8 consumes dst: MCons { head: a; tail: () },
9 consumes xs: list a,

10 consumes ys: list a) : (| dst @ list a) =
11 match xs with
12 | Nil ->
13 dst.tail <- ys;
14 tag of dst <- Cons
15 | Cons ->
16 let dst ’ = MCons { head = xs.head;
17 tail = () } in
18 dst.tail <- dst ’;
19 tag of dst <- Cons;
20 appendAux (dst ’, xs.tail , ys)
21 end
22

23 val append [a] (
24 consumes xs: list a,
25 consumes ys: list a) : list a =
26 match xs with
27 | Nil ->
28 ys
29 | Cons ->
30 let dst = MCons { head = xs.head;
31 tail = () } in
32 appendAux (dst , xs.tail , ys);
33 dst
34 end

Figure 1. Tail-recursive concatenation of immutable lists

mutable cell dst (line 30). This cell contains the first element of the
final list, namely xs.head. It is in an intermediate state: it cannot be
considered a valid list, since its tail field contains the unit value ().
It is now up to appendAux to finish the work by constructing the
concatenation of xs.tail and ys and writing the address of that list
into dst.tail. Once appendAux returns, dst has become a well-
formed list (this is indicated by the postcondition “dst @ list a”
on line 10) and is returned by append.

The function appendAux expects an unfinished, mutable cell dst
and two lists xs and ys. Its purpose is to write the concatenation of
xs and ys into dst.tail, at which point dst can be considered a
well-formed list. If xs is Nil (line 12), the tail field of dst is made
to point to ys. Then, dst, a mutable MCons cell, is “frozen” by a
tag update instruction and becomes an immutable Cons cell. (This
instruction compiles to a no-op.) If xs is a Cons cell (line 15), we
allocate a new destination cell dst’, let dst.tail point to it, freeze
dst, and repeat the process via a tail-recursive call.

This example illustrates several important aspects of Mezzo.

Expressiveness In a traditional typed programming language,
such as Java or OCaml, list concatenation in destination-passing
style is possible, but its result must be a mutable list, because an
immutable list cell cannot be gradually initialized.

State change The call appendAux(dst, xs, ys) changes the
“type” of dst from “unfinished, mutable list cell” to “well-formed,
immutable list”. This type-changing update is sound because one
must be the “unique owner” of the mutable cell dst for this call to
be permitted.

Ownership transfer In fact, the call appendAux(dst, xs, ys)
also changes the “type” of xs and ys from “immutable list” to “un-

2 2013/5/7

known”. Indeed, the postcondition of appendAux guarantees noth-
ing about xs and ys. In other words, the caller gives up the permis-
sion to use xs and ys as lists, and in return gains the permission to
use dst as a list. In other words, the ownership of the list elements
is transferred from xs and ys to dst. This is required for sound-
ness. We do not know what the list elements are (they have abstract
type a). They could be mutable objects, whose “unique ownership”
property must not be violated2.

2.2 Permissions
Permissions do not exist at runtime: they are purely an artefact
of the type system. An atomic permission x@ t represents the
right to use the program variable x at type t. Two permissions P1

and P2 can be combined to form a composite permission P1 ∗ P2.
The conjunction ∗ is separating [28] at mutable memory locations
and requires agreement at immutable locations (§4.1). The empty
permission, a unit for conjunction, is written empty.

When execution begins, a program conceptually possesses an
empty permission. As execution progresses through the code, per-
missions come and go. At any program point, there is a certain
current permission. Most of the time, the manner in which permis-
sions evolve and flow is implicit. It must be made explicit in a few
places: in particular, every function type must include explicit pre-
and postconditions.

Let us continue our discussion of the concatenation example
(Figure 1). We explain in an informal manner how the function
append is type-checked. This allows us to illustrate how permis-
sions are used and how they evolve.

The typing rules appear in Figure 4; the permission subsumption
rules appear in Figure 6. In the following, we refer to some of these
rules, but defer their detailed explanation to §5.

The append function is defined at line 23. At the beginning of
the function’s body, by the typing rule FUNCTION, permissions for
the formal arguments are available. Thus, the current permission is:

xs@ list a ∗ ys@ list a

This permission represents the right to use xs and ys as lists of
elements of type a.

This permission soon evolves, thanks to the match construct,
which examines the tag carried by xs. By the typing rule MATCH,
as we learn that xs is a Nil cell, we replace our permission about
xs with a more precise one, which incorporates the knowledge that
the tag of xs is Nil. At line 27, the current permission becomes:

xs@ Nil ∗ ys@ list a

xs@ Nil is a structural permission: it asserts that xs points to
a memory block whose tag is Nil (and which has zero fields).
Similarly, at line 29, the current permission becomes:

xs@ Cons {head : a; tail : list a} ∗ ys@ list a

The structural permission for xs asserts that xs points to a memory
block that carries the tag Cons and has a head field of type a and a
tail field of type list a.

At this stage, the type-checker performs an implicit operation. It
applies the permission subsumption rule DECOMPOSEBLOCK. This
causes fresh names hd and tl to be introduced for the head and
tail fields of this structural permission. This yields the following
conjunction:

xs@ Cons {head : (=hd); tail : (=tl)} ∗
hd@ a ∗ tl@ list a ∗
ys@ list a

2 We later note (§4.1) that if at a call site the variable a is instantiated
with a duplicable type, say int, then the permissions xs @ list int
and ys @ list int are considered duplicable, so they can in fact be
duplicated prior to the call appendAux(dst, xs, ys), hence are not lost.

This is our first encounter of a singleton type, which we write =hd.
A permission of the form x@ =y asserts that the variables x
and y denote the same value. In particular, if they denote memory
locations, this means that x and y point to the same object: this is
a must-alias constraint. We write x = y for x@ =y. Similarly, in
the structural permission above, the fact that the head field has type
=hd means that the value of this field is hd. We write head = hd
for head : (=hd).

By the typing rules NEW and LET, when the cell dst is allocated
(line 30), a permission for dst appears, namely:

dst@ MCons {head = hd; tail : ()}
We now see how singleton types help reason about sharing. At this
point, we have three permissions that mention hd. We know that
hd is stored in the head field of xs; we know that hd is stored in
the head field of dst; and we have a permission to use hd at type a.
We do not need a borrowing convention [24] in order to fix which
of xs or dst owns hd. Instead, the system knows that the object
hd is accessible via two paths, namely xs.head and dst.head, and
can be used under either name. This use of singleton types is taken
from Alias Types [29].

By the typing rules READ and APPLICATION, in order to call
appendAux(dst, xs.tail, ys) (line 32), we need the following
conjunction of permissions. It is the precondition of appendAux,
suitably instantiated:

dst@ MCons {head : a; tail : ()} ∗ tl@ list a ∗ ys@ list a

Are we able to satisfy this requirement? The answer is positive.
The subsumption rules EXISTSINTRO and DECOMPOSEBLOCK allow
combining the permissions MCons {head = hd; tail : ()} and
hd@ a (both of which are present) to obtain the first conjunct
above. The second and third conjuncts above are present already.

By APPLICATION, the precondition of appendAux is consumed
(taken away from the caller). After the call, the postcondition of
appendAux is added to the current permission, which is then:

xs@ Cons {head = hd; tail = tl} ∗ dst@ list a

The conjunct that concerns xs is of no use, and is in fact silently
discarded when we reach the end of the Cons branch within append.
The conjunct that concerns dst is used to check that this branch
satisfies append’s advertised return type, namely list a. Similarly,
in the Nil branch, the permission ys@ list a shows that a value of
appropriate type is returned. In conclusion, append is well-typed.

2.3 To loop or to tail call?
In-place concatenation (that is, melding) of mutable lists can also
be implemented by a tail-recursive function. The pattern is analo-
gous to that of Figure 1, but the code is simpler, because the first
list is not copied, and “freezing” is not required.

These algorithms are traditionally viewed as iterative and im-
plemented using a while loop. Berdine et al.’s iterative formula-
tion of mutable list melding [4], which is proved correct in sepa-
ration logic, has a complex loop invariant, involving two “list seg-
ments”, and requires an inductive proof that the concatenation of
two list segments is a list segment. In contrast, in the tail-recursive
approach, the “loop invariant” is the type of the recursive function
(e.g., appendAux in Figure 1). This type is reasonably natural and
does not involve list segments.

How do we get away without list segments and without induc-
tive reasoning? The trick is that, even though appendAux is tail-
recursive, which means that no code is executed after the call by
appendAux to itself, a reasoning step still takes place after the call.
Immediately before the call, the current permission can be written
as follows:

xs @ Cons { head = hd; tail = tl } *

3 2013/5/7

dst @ Cons { head: a; tail = dst ’ } *
dst ’ @ MCons { head: a; tail: () } *
tl @ list a *
ys @ list a

The call “appendAux (dst’, xs.tail, ys)” consumes the last
three permissions and produces instead dst’ @ list a. The first
two permissions are “framed out”, i.e., implicitly preserved. After
the call, we have:

xs @ Cons { head = hd; tail = tl } *
dst @ Cons { head: a; tail = dst ’ } *
dst ’ @ list a

Dropping the first permission and combining the last two yields:

dst @ Cons { head: a; tail: list a }

which can be folded back to dst @ list a, so appendAux satisfies
its postcondition. The framing out of a permission during the re-
cursive call, as well as the folding step that takes place after the
call, are the key technical mechanisms that allow us to avoid the
need for list segments and inductive reasoning. In short, the code
is tail-recursive, but the manner in which one reasons about it is
recursive.

Minamide [22] proposes a notion of “data structure with a hole”,
or in other words, a segment, and applies it to the problem of con-
catenating immutable lists. Walker and Morrisett [34] offer a tail-
recursive version of mutable list concatenation. Their code is for-
mulated in a low-level typed intermediate language, as opposed to a
surface language. The manner in which they avoid reasoning about
list segments is analogous to ours. There, because the code is for-
mulated in continuation-passing style, the reasoning step that takes
place “after the recursive call” amounts to composing the current
continuation with a coercion. Maeda et al. [21] study a slightly
different approach, also in the setting of a typed intermediate lan-
guage, where separating implication offers a way of defining list
segments. Our approach could be adapted to an iterative setting by
adopting a new proof rule for while loops. This is noted indepen-
dently by Charguéraud [9, §3.3.2] and by Tuerk [33].

3. Syntax
3.1 Types
We work with the “internal syntax” of types. The surface syntax
adds a few syntactic conventions, which we explain later on (§6).
For the moment, the reader may ignore the two underlined con-
structs in Figure 2.

Types have kinds. The base kinds are type, term, and perm. The
standard types, such as function types, tuple types, etc. have kind
type. The types of kind term are program variables. If a variable x
is bound (by let, fun, or match) in the code, then x may appear
not only in the code, but also in a type: it is a type of kind term.
The types of kind perm are permissions. First-order arrow kinds
are used to classify parameterized algebraic data types.

In Figure 2, we use the meta-variables T and X to stand for
types and variables of arbitrary kind; we use t and P to suggest
that a type has kind type and perm, respectively; we use a and x
to suggest that a variable has kind type and term, respectively. The
full definition of the kind system appears in Appendix A.2.2.

The structural type A {~f : ~t} describes a block in the heap
whose tag is currently A and whose fields ~f currently have the
types ~t. An example, taken from §2, is MCons {head : a; tail : ()}.
The data constructor A must refer to a previously defined algebraic
data type, and the fields ~f must match the definition of A. The
types ~t, however, need not match the types that appear in the
definition of A. For instance, in the definition of MCons, the type of
the tail field is mlist a, not (). This implies that the above structural

κ ::= type | term | perm | κ→ κ kind

T, t, P ::= type or permission
X variable (a, x, . . .)
t→ t function type
(~t) tuple type
A {~f : ~t} adopts t structural type
T ~T n-ary type application
∀(X : κ) T universal quantification
∃(X : κ) T existential quantification
=x singleton type
(t | P) type/permission conjunction
dynamic (see §7)
x@ t atomic permission
empty empty permission
P ∗ P permission conjunction
x : t name introduction (see §6)
consumes T consumes annotation (see §6)

d ::= algebraic data type definition
mutable? data d (~X : ~κ) = ~b
adopts t

b ::= A {~f : ~t} algebraic data type branch

Figure 2. Syntax of types and permissions

e ::= expression
x variable
let p = e in e local definition
fun [~X : ~κ] (x : t) : t = e anonymous function
e [t : κ] type instantiation
e e function application
(~e) tuple
A {~f = ~e} data constructor application
e.f field access
e.f ← e field update
match e with ~p→ ~e case analysis
tag of e← A tag update
give e to e adoption
take e from e abandon
fail dynamic failure

p ::= pattern
x variable
(~p) tuple pattern
A {~f = ~p} data constructor pattern

Figure 3. Syntax of expressions

type cannot be folded to mlist a; the tail field must be updated
first. A structural type may include a clause of the form adopts t,
whose meaning is explained later on (§7). If omitted, adopts⊥ is
the default.

An example of a type application T ~T is list int. We sometimes
refer to this as a nominal type, as opposed to a structural type.

The universal and existential types are in the style of System F .
A (base) kind annotation is mandatory; if omitted, type is the
default. The bottom type ⊥ and the top type unknown can be
defined as ∀a.a and ∃a.a, respectively.

4 2013/5/7

The conjunction of a type and a permission is written (t | P).
Because permissions do not exist at runtime, a value of this type
is represented at runtime as a value of type t. Such a conjunction
is typically used to express function pre- and postconditions. The
type (() | P) is abbreviated as (| P).

Algebraic data types are defined using the keyword data. These
definitions are anologous to Haskell’s and OCaml’s. Each branch
is explicitly named by a data constructor and carries a number of
named fields. If the definition is prefixed by the keyword mutable,
then the tag and all fields are considered mutable, and can be
modified via tag update and field update instructions; otherwise,
they are considered immutable. Examples appear at the top of
Figure 1. Like a structural type, an algebraic data type definition
may include an adopts clause; if omitted, adopts⊥ is the default.

3.2 Expressions
The syntax of expressions (Figure 3) forms a fairly standard λ-
calculus with tuples and algebraic data structures.

A function definition must be explicitly annotated with the
function’s type parameters, argument type, and return type. One
reason for this is that the argument and return type serve as pre- and
postconditions and in general cannot be inferred. Furthermore, we
have System F -style polymorphism. Explicit type abstractions are
built into function definitions. Type applications must in principle
be explicit as well. The current prototype allows omitting them and
performs a limited form of local type inference, which is outside
the scope of this paper.

4. Ownership, modes, and extent
We wrote earlier (§1) that “to have a permission for x” can be
understood informally as “to own x”. Roughly speaking, this is
true, but we must be more precise, for two reasons. First, we wish to
distinguish between mutable data, on which we impose a “unique
owner” policy, and immutable data, for which there is no such
restriction. For this reason, types and permissions come in several
flavors, which we refer to as modes (§4.1). Second, in a permission
of the form x@ t, the type t describes the extent to which we own x.
If xs is a list cell, do we own just this cell? the entire spine? the
spine and the elements? The answer is given by the type t. For
instance (§4.2), xs@ Cons {head = hd; tail = tl} represents the
ownership of just the cell xs, because the singleton types =hd and
=tl denote the ownership of an empty heap fragment. On the other
hand, xs@ Cons {head : a; tail : list a} gives access to the entire
list spine. (Because list is an immutable algebraic data type, this
is read-only, shared access.) It further gives access to all of the list
elements, insofar as the type a allows this access. In this example,
a is a variable: one must wait until a is instantiated to determine
what the elements are and to what extent we own them.

4.1 Modes
A subset of the permissions are considered duplicable, which
means that they can be implicitly copied (DUPLICATE, Figure 6).
Copying a permission for an object x means that x may be shared:
it may be used via different pointers, or by different threads simul-
taneously. Thus, a duplicable permission does not represent unique
ownership; instead, it denotes shared knowledge. Because the sys-
tem does not control with whom this knowledge is shared, this
knowledge must never be invalidated, lest some principals be left
with an outdated version of the permission. Therefore, a duplicable
permission denotes shared, permanent knowledge. The permis-
sions that describe read-only, immutable data are duplicable: for
instance, xs@ Cons {head = hd; tail = tl} and xs@ list int are
duplicable.

A subset of the permissions are considered exclusive. An ex-
clusive permission for an object x represents the “unique owner-

ship” of x. In other words, such a permission grants read-write ac-
cess to the memory block at address x and guarantees that no-one
else has access to this block. The permissions that describe mutable
memory blocks are exclusive: for instance, xs@ MCons {head =
hd; tail = tl} is exclusive. An exclusive permission is analogous
to a “unique” permission in other systems [5] and to a separation
logic assertion [28].

Predicates of the form “t is duplicable” and “t is exclusive” are
part of a more general form of predicates which we call facts. We
are able to compute the fact for any given type, as well as an optimal
fact for any given data type, such as “a list is duplicable as long as
its elements are duplicable”. The details are provided in §B.

No permission is duplicable and exclusive. Some permissions
are neither duplicable nor exclusive. “xs@ list (ref int)”, which
describes an immutable list of references to integers, is such a per-
mission. It must not be duplicated: this would violate the “unique
owner” property of the list elements. It is not exclusive: the list cell
at xs is an immutable object, and this permission does not guarantee
exclusive access to this cell. Another example is “x @ a”. Because
a is a type variable, one cannot assume that this permission is du-
plicable (or exclusive)3.

Every permission is affine. One can implicitly drop a permission
that one does not need.

The language is designed so that the type-checker (and the
programmer!) can always tell what mode a permission P satisfies:
duplicable, exclusive, or neither (hence, affine). Modes form a
lattice, whose top element is “affine”, and where “duplicable” and
“exclusive” are incomparable; a “bottom” mode is added, which
only an inconsistent permission can satisfy. Because algebraic data
types are recursively defined, their mode analysis requires a fixed
point computation, whose details are given in §B.

If t and u are exclusive types, then the conjunction x@ t∗y@ u
implies that x and y are distinct addresses. In other words, conjunc-
tion of exclusive permissions is separating. On the other hand, if t
and/or u are duplicable, x and y may be aliases. Conjunction is not
in general separating. Conjunction of duplicable permissions re-
quires agreement between the two conjuncts. The reader is referred
to the draft paper that accompanies the type soundness proof [26]
for a formal definition of the semantics of conjunction.

4.2 Extent
Every type t has an ownership reading: that is, the permission x@ t
represents certain access rights about x. However, the extent of
these rights (or, in separation logic terminology, their footprint)
depends on the type t.

A singleton type =y, for instance, has empty extent. Indeed, the
permission x@ =y, which we usually write x = y, asserts that x
and y are equal, but does not allow assuming that x is a pointer, let
alone dereferencing it.

A structural type such as Cons {head = hd; tail = tl} has an
extent of one memory block. The permission xs@ Cons {head =
hd; tail = tl} gives us (read-only, shared) access to the block at
address xs, and guarantees that its head and tail fields contain the
values hd and tl, respectively, but (as per the semantics of singleton
types) guarantees nothing about hd and tl.

What is the extent of a “deep” composite type, such as the
structural type Cons {head : a; tail : list a} or the nominal type
list a? What does it mean to own a list? In order to answer these
questions, one must understand how a composite permission is
decomposed into a conjunction of more elementary permissions.

A structural permission, such as xs@ Cons {head : a; tail :
list a}, can be decomposed by introducing a fresh name for each of

3 Mezzo allows the programmer to explicitly assume that a type variable a
is duplicable, or exclusive. This mechanism is not treated in this paper.

5 2013/5/7

the values stored in the fields. (See DECOMPOSEBLOCK in Figure 6.)
The result is a more verbose, but logically equivalent, permission:

∃hd, tl.(xs@ Cons {head = hd; tail = tl} ∗ hd@ a ∗ tl@ list a)

The meaning and extent of the original structural permission is now
clearer: it grants access to the cell at xs and access to the first list
element (to the extent dictated by the type a) and access to the rest
of the list.

The meaning of a nominal permission, such as xs@ list a,
is just the disjunction of the meanings of its unfoldings, namely
xs@ Nil and xs@ Cons {head : a; tail : list a}.

If a is (instantiated with) an exclusive type, then we find that
xs@ list a implies that the list elements are pairwise distinct, and
grants read-only access to the list spine and exclusive access to the
list elements.

5. Type-checking
5.1 The typing judgment
The typing judgment takes the form K;P ` e : t. It is induc-
tively defined in Figures 4 and 5. The kind environment K maps
variables to kinds. This judgment means that, by consuming the
permission P , the expression e produces a value of type t. It is
analogous to a Hoare logic or separation logic triple, where P is
the precondition and t is the postcondition.

The typing rules require many sub-expressions to be variables.
For instance, the rule READ cannot handle a field access expression
of the form e.f : instead, it requires x.f . This requirement is met by
first performing a monadic transformation, which introduces extra
let constructs. Furthermore, the pattern matching rules (Figure 5)
cannot handle deep patterns: they require shallow patterns. Again,
this requirement is met by introducing extra let constructs. We omit
the details of these transformations. For brevity, we omit the side
conditions that concern the freshness of variables and the well-
kindedness of the user-provided type annotations.

VAR is the axiom rule. It is worth noting that, in conjunction with
the subsumption rule EQUALITYREFLEXIVE (Figure 6), it allows
proving that x has type =x, even in the absence of any hypothesis
about x.

LET corresponds to the sequence rule of separation logic.
FUNCTION states that a duplicable permission P that exists at the

function definition site is also available within the function body.
Requiring P to be duplicable allows us to consider every function
type duplicable. Thus, a function can be shared without restriction
and can be invoked as many times as desired, provided of course
that one is able to satisfy its precondition. If one wishes to write a
function that captures a non-duplicable permission P , and can be
invoked at most once, this is still possible. Indeed, the type t1

1→ t2
of “one-shot” functions can be defined as:

∃(p : perm) (((t1 | p)→ t2) | p)
This is a conjunction of a function whose precondition is p and of
one copy of p. Because p is abstract, it is considered affine. Hence,
at most one call is possible, after which p is consumed and the
function becomes unusable.

APPLICATION corresponds to the rule for procedure calls in sep-
aration logic. The caller gives up the permission x2 @ t2, which is
consumed, so to speak, and in return gains a permission for the re-
sult of the function call, at type t1. In other words, because types
have an ownership reading, a function type t1 → t2 describes not
only the shape of the function’s arguments and results, but also the
side effects that the function may perform, as well as the transfers
of ownership that occur from the caller to the callee and back.

NEW uses a structural type to describe the newly-allocated mem-
ory block in an exact manner. TUPLE is analogous.

READ requires a structural permission x@ A {F [f : t]}, which
guarantees that x points to a memory block that contains a field
named f , and allows us to dereference x.f 4. (We overload field
names: there could exist multiple data constructors that have a field
named f . There can be at most one permission of this form, though,
which allows disambiguation to take place.) This permission indi-
cates that the value stored in the field f has type t. READ concludes
that the field access expression x.f has type t, and that the struc-
tural permission x@ A {F [f : t]} is preserved. There is a catch:
because the type t occurs twice in this postcondition, clearly we
must require t to be duplicable, or the rule would be unsound. For-
tunately, this is not a problem: by using DECOMPOSEBLOCK (Fig-
ure 6; also explained earlier, see §2.2 and §4.2), it is possible to
arrange for t to be a singleton type, which is duplicable.

Like READ, WRITE requires a structural permission, of the form
x1 @ A {F [f : t1]}. It checks that this permission is exclusive,
i.e., the data constructor A is associated with a mutable algebraic
data type. This ensures that we have write access. In fact, since
we have exclusive access to x1, a strong (type-changing) update
is sound. The structural permission is changed to x1 @ A {F [f :
t2]}, where t2 is the type of x2. Without loss of generality, one
may take t2 to be the singleton type =x2. This allows the type-
checker to record that x1.f and x2 are now aliases. If desired,
the permissions x1 @ A {F [f = x2]} and x2 @ t2 can later be
combined by DECOMPOSEBLOCK to yield x1 @ A {F [f : t2]}.
Because DECOMPOSEBLOCK, read from right to left, involves a loss
of information, it is typically applied by the type-checker only
“on demand”, i.e., to satisfy a function postcondition or a type
annotation.

MATCH is used to type-check a case analysis construct. Each
branch is type-checked independently. We currently do not check
that the case analysis is exhaustive, but are planning to add this fea-
ture in the future. The premise relies on a judgment of the form
K;P ` let p = x in e : t. This is not a new judgment; it is
an ordinary typing judgement, but, for clarity, the typing rules that
have a conclusion of this form are isolated in Figure 5. Although
these rules may appear somewhat daunting, they are in fact quite
straightforward. LETTUPLE checks that x is a tuple, i.e., we have
a permission of the form x@ (t1, . . . , tn). If that is the case, then
matching x against the tuple pattern (x1, . . . , xn) is permitted, and
gives rise to a conjunction of permissions of the form xi @ ti.
Because the permission for x is not lost, the types ti are dupli-
cated, so they are required to be duplicable. Again, this require-
ment causes no loss of generality, since one can arrange to intro-
duce singleton types ahead of time. LETDATAMATCH is analogous to
LETTUPLE, but concerns a (mutable or immutable) memory block.
LETDATAMISMATCH concerns the situation where the pattern, which
mentions the data constructor B, will clearly not match x, which
is statically known to have the tag A. In that case, the branch is
dead code, and is considered well-typed. LETDATAUNFOLD refines
a nominal permission, such as x@ list a, by replacing it with a
structural one, such as x@ Cons {head : a; tail : list a}, obtained
by unfolding the algebraic data type and specializing it with respect
to the data constructor that appears in the pattern. We omit the exact
definition of unfolding.

WRITETAG type-checks a tag update instruction, which modifies
the tag carried by a memory block. Like WRITE, it requires an
exclusive permission for this block. It further requires the new
tag B to carry the same number of fields as the previous tag A.
(Thus, the block does not have to be enlarged or shrunk.) The
structural permission is updated in a straightforward way. The
types ~t of the fields do not change. The names of the fields change

4 We write F [f : t] for a sequence of field/type pairs within which the pair
f : t occurs. The adopts clause, if there is one, is irrelevant.

6 2013/5/7

VAR
K;x@ t ` x : t

LET
K;P ` e1 : t1 K,x : term;x@ t1 ` e2 : t2

K;P ` let x = e1 in e2 : t2

FUNCTION

K, ~X : ~κ, x : term;P ∗ x@ t1 ` e : t2 P is duplicable

K;P ` fun [~a : ~κ] (x : t1) : t2 = e : ∀(~X : ~κ) t1 → t2

INSTANTIATION
K;P ` e : ∀(X : κ) t1

K;P ` e : [T2/X]t1

APPLICATION
K;x1 @ t2 → t1 ∗ x2 @ t2 ` x1 x2 : t1

TUPLE

K; ~x@ ~t ` (~x) : (~t)

NEW

A {~f} is defined

K; ~x@ ~t ` A {~f = ~x} : A {~f : ~t}

READ
t is duplicable

P is x@ A {F [f : t]} adoptsu
K;P ` x.f : (t | P)

WRITE
A {. . .} is exclusive

K; x1 @ A {F [f : t1]} adoptsu ∗ x2 @ t2 ` x1.f ← x2 : (|
x1 @ A {F [f : t2]} adoptsu)

MATCH
for every i, K;P ` let pi = x in ei : t

K;P ` match x with ~p→ ~e : t

WRITETAG

A {. . .} is exclusive B {~f ′} is defined #~f = #~f ′

K; x@ A {~f : ~t} adoptsu ` tag of x← B : (|
x@ B {~f ′ : ~t} adoptsu)

GIVE
t2 adopts t1

K;x1 @ t1∗ x2 @ t2 `
give x1 to x2 : (| x2 @ t2)

TAKE
t2 adopts t1

K;x1 @ dynamic ∗ x2 @ t2 `
take x1 from x2 : (| x1 @ t1∗ x2 @ t2)

FAIL

K;P ` fail : t

SUB
K;P2 ` e : t1

P1 ≤ P2 t1 ≤ t2
K;P1 ` e : t2

FRAME
K;P1 ` e : t

K;P1 ∗ P2 ` e : (t | P2)

EXISTSELIM
K,X : κ;P ` e : t

K; ∃(X : κ) P ` e : t

Figure 4. Typing rules

LETTUPLE

(~t) is duplicable
K,~x : term;P ∗ x@ (~t) ∗ ~x@ ~t ` e : t

K;P ∗ x@ (~t) ` let (~x) = x in e : t

LETDATAMATCH

(~t) is duplicable
K,~x : term;P ∗ x@ A {~f : ~t} adoptsu ∗ ~x@ ~t ` e : t

K;P ∗ x@ A {~f : ~t} adoptsu ` let A {~f = ~x} = x in e : t

LETDATAMISMATCH
A and B belong to a common algebraic data type

K;P ∗ x@ A {~f : ~t} adoptsu ` let B {~f ′ = ~x} = x in e : t

LETDATAUNFOLD

x@ A {~f : ~t} adoptsu is an unfolding of T ~T

K;P ∗ x@ A {~f : ~t} adoptsu ` let A {~f = ~x} = x in e : t

K;P ∗ x@ T ~T ` let A {~f = ~x} = x in e : t

Figure 5. Auxiliary typing rules for pattern matching

from ~f to ~f ′, where the sequences of fields are ordered in the
same way as in the (user-provided) definitions of A and B. It is
worth noting that A and B need not belong to the same algebraic
data type: thus, a memory block can be re-used for a completely
new purpose. Furthermore, the tag B may be associated with an
immutable algebraic data type: in that case, the block is frozen,
that is, becomes forever immutable. This feature is exploited in the
concatenation of immutable lists (Figure 1, line 19).

GIVE and TAKE are explained later on (§7).
SUB is analogous to Hoare’s rule of consequence. It relies on

permission subsumption, P1 ≤ P2, defined in Figure 6 and dis-
cussed further on (§5.2), and on subtyping, t1 ≤ t2, defined as
x@ t1 ≤ x@ t2 for a fresh x.

FRAME is analogous to the frame rule of separation logic.

5.2 The permission subsumption judgment

The rules that define the subsumption judgment appear in Figure 6.
We comment a subset of them. Since x = y is sugar for x@ =y,
the rule EQUALITYREFLEXIVE can be understood as a claim that
x inhabits the singleton type =x. EQUALSFOREQUALS shows how
equations are exploited: if y1 and y2 are known to be equal, then
they are interchangeable. (We write ≡ for subsumption in both di-
rections.) DUPLICATE states that a permission that is syntactically
considered duplicable can in fact be duplicated. MIXSTAR intro-
duces and eliminates (t | P). WEAKEN states that every permis-
sion is affine. EXISTSINTRO introduces an existential permission;
EXISTSATOMIC converts between an existential permission and an
existential type. When read from left to right, DECOMPOSEBLOCK,
which was discussed earlier (§2.2, §4.2), introduces a fresh name x
for the value stored in y.f . When read from right to left, it forgets
such a name. (In that case, it is typically used in conjunction with
EXISTSINTRO.) FOLD folds an algebraic data type definition, turning

7 2013/5/7

REFLEXIVE
P ≤ P

TRANSITIVE
P1 ≤ P2 P2 ≤ P3

P1 ≤ P3

EMPTYTOP
P ≤ empty

EMPTYAPPEARS
P ≤ empty ∗ P

STARCOMMUTATIVE
P1 ∗ P2 ≤ P2 ∗ P1

STARASSOCIATIVE
P1 ∗ (P2 ∗ P3) ≤ (P1 ∗ P2) ∗ P3

EQUALITYREFLEXIVE

empty ≤ (x = x)
EQUALSFOREQUALS

(y1 = y2) ∗ [y1/x]P ≡ (y1 = y2) ∗ [y2/x]P

DUPLICATE
P is duplicable
P ≤ P ∗ P

HIDEDUPLICABLEPRECONDITION
P is duplicable

(x@ (t1 | P)→ t2) ∗ P ≤ x@ t1 → t2

MIXSTAR
x@ t ∗ P ≡ x@ (t | P)

WEAKEN
P1 ∗ P2 ≤ P2

EXISTSINTRO
[T/X]P ≤ ∃(X : κ) P

EXISTSSTAR
P1 ∗ ∃(X : κ) P2 ≡ ∃(X : κ) (P1 ∗ P2)

EXISTSATOMIC
x@ ∃(X : κ) t
≡ ∃(X : κ) (x@ t)

DECOMPOSETUPLE
y@ (. . . , t, . . .)

≡ ∃(x : term) (y@ (. . . ,=x, . . .) ∗ x@ t)

DECOMPOSEBLOCK
y@ A {F [f : t]} adoptsu

≡ ∃(x : term) (y@ A {F [f = x]} adoptsu ∗ x@ t)

FOLD

A {~f : ~t} adoptsu is an unfolding of T ~T

x@ A {~f : ~t} adoptsu ≤ x@ T ~T

UNFOLD

A {~f : ~t} adoptsu is an unfolding of T ~T

T ~T has only one branch

x@ T ~T ≤ x@ A {~f : ~t} adoptsu

DYNAMICAPPEARS
t is exclusive

x@ t ≤ x@ t ∗ x@ dynamic

COARROW
u1 ≤ t1 t2 ≤ u2

x@ t1 → t2 ≤ x@ u1 → u2

COTUPLE
~t ≤ ~u

x@ (~t) ≤ x@ (~u)

COBLOCK
~t ≤ ~u t ≤ u

x@ A {~f : ~t} adopts t ≤ x@ A {~f : ~u} adoptsu

COSTAR
P1 ≤ P2 Q1 ≤ Q2

P1 ∗Q1 ≤ P2 ∗Q2

Figure 6. Permission subsumption

a structural type into a nominal type. Unfolding is normally per-
formed by case analysis (see LETDATAUNFOLD in Figure 4), but in
the special case where an algebraic data type has only one branch
(i.e., it is a record type), it can be implicitly unfolded by UNFOLD.
DYNAMICAPPEARS is explained later on (§7).

6. Surface syntax
The internal syntax, which we have been using so far, can be
fairly verbose. To remedy this, we introduce two syntactic con-
ventions, which rely on the name introduction construct and on
the consumes keyword (Figure 2). Two transformations eliminate
these constructs, so as to obtain a type expressed in the internal syn-
tax. This section contains an informal discussion that gives the in-
tuition for these transformations. The two transformations are for-
malized and discussed in A.4.

6.1 The name introduction form
The construct x : t allows introducing a name x for a component
of type t. This allows writing “dependent function types”, such
as (x1 : t1) → (x2 : t2), where by convention x1 is bound
within t1 and t2, while x2 is bound within t2. This is desugared
by quantifiying x1 universally above the arrow and quantifying x2
existentially in the right-hand side of the arrow.

As an example, consider the type of :=, the function that writes
a reference. This function expects a pair of a reference x whose
content has type a and of a value of type b, which it stores into x.
At the end, x has become a reference whose content has type b. The
variable x must be mentioned in the pre- and postcondition. In the
internal syntax, the type of := is:

∀a, b.∀(x : term) ((=x | x@ ref a), b)→ (| x@ ref b)

Thanks to the name introduction form, instead of planning ahead
and quantifying x in front of the function type, one names the first
argument “x” on the fly. Thus, in the surface syntax, one writes:

∀a, b.(consumes x : ref a, consumes b)→ (| x@ ref b)

This is not significantly shorter, because of the consumes keyword,
which must be used in the surface syntax, as explained below. In
actual use, though, the comfort afforded by this feature is critical.

6.2 The consumes annotation
Often, a permission is required and returned by a function, in
which case it is unpleasant to have to write this permission twice,
in the precondition and postcondition. Drawing inspiration from
Sing# [15], we adopt the convention that, in the surface syntax, by
default, the permission for the argument is required and returned,
i.e., it is not consumed.

For instance, the type of the list length function, which in the
internal syntax is:

∀a.∀(x : term)(=x | x@ list a)→ (int | x@ list a)

can in the surface syntax be written in a much more pleasant form:

∀a.list a→ int

The type list a is mentioned once, instead of twice, and as a side
effect, the need to name the argument x vanishes.

When a permission is consumed, though, we need a way of
indicating this. This is the purpose of the consumes keyword. When
a component is marked with this keyword, the permission for this
component is required and not returned. This keyword only makes
sense in the left-hand side of an arrow.

Because internal syntax and surface syntax interpret the func-
tion type differently, a translation is required, regardless of whether
consumes is used. Consider a function type of the form t → u,
where t does not contain any name introduction forms. Let t1 stand
for [τ/consumes τ]t, i.e., a copy of t where the consumes key-
word is erased. Let t2 stand for [>/consumes τ]t, i.e., a copy of t
where every component marked with this keyword is replaced with
>5. Then, the translation of this function type is (x : t1) → (u |

5 Here, we write > for unknown or empty, depending on whether the
consumes keyword is applied to a type or a permission.

8 2013/5/7

1 abstract bag a
2 val create: [a] () -> bag a
3 val insert: [a] (consumes a, bag a) -> ()
4 val retrieve: [a] bag a -> option a

Figure 7. An interface for bags

x@ t2). The parts of the argument that are not marked as consumed
are returned to the caller.

The type of the function insert, which appears in Figure 7 and
is discussed in §7.1, states that the first argument is consumed,
while the second argument is not. Its translation into the internal
syntax is as follows:

∀(a : type) ∀(x : term)
(=x | x@ (a, bag a))→ (| x@ (unknown, bag a))

6.3 Function definitions
In the internal syntax, functions take the form fun (x : t1) : t2 = e,
where one variable, namely x, is bound in e. In the surface syntax,
instead, functions take the form fun t1 : t2 = e. The argument
type t1 is interpreted as a pattern, and the names that it introduces
are considered bound in e. An example is fun (x : int, y : int) :
int = x + y, where (x : int, y : int) is the type of the argument,
int is the type of the result, and x and y are bound in the function
body, which is x+ y.

7. Adoption and abandon
The permission discipline that we have presented so far has limited
expressive power. It can describe immutable data structures with ar-
bitrary sharing and tree-shaped mutable data structures. However,
because mutable memory blocks are controlled by exclusive per-
missions, it cannot describe mutable data structures with sharing.

7.1 Overview
In order to illustrate this problem, let us imagine how one could
implement a “bag” abstraction. A bag is a mutable container, which
supports two operations: inserting a new element and retrieving an
arbitrary element.

We would like our implementation to offer the interface in
Figure 7. There, bag is presented as an abstract type. Because
it is not explicitly declared duplicable, it is regarded as affine.
Hence, a bag “has a unique owner”, i.e., is governed by a non-
duplicable permission. The function create creates a new bag,
whose ownership is transferred to the caller. The type of insert
indicates that insert(x, b) requires the permissions “x @ t” and
“b @ bag t”, for some type t, and returns only the latter. Thus, the
caller gives up the ownership of x, which is “transferred to the bag”.
Conversely, the call “let o = retrieve b in ...” produces the
permission “o @ option a”, which means that the ownership of
the retrieved element (if there is one) is “transferred from the bag
to the caller”.

To implement bags, we choose a simple data structure, namely
a mutable singly-linked list. One inserts elements at the tail and
extracts elements at the head, so this is a FIFO implementation.
One distinguished object b, “the bag”, has pointers to the head and
tail of the list, so as to allow constant-time insertion and extraction.
(We use “object” as a synonym for “memory block”.)

This data structure is not tree-shaped: the last cell in the list is
accessible via two distinct paths. In order to type-check this code,
we must allow the ownership hierarchy and the structure of the heap
to differ. More specifically, we would like to view the list cells as
collectively owned by the bag b. That is, we wish to keep track of

1 mutable data cell a =
2 Cell { elem: a; next: dynamic }
3

4 mutable data bag a =
5 Empty { head , tail: () }
6 | NonEmpty { head , tail: dynamic }
7 adopts cell a
8

9 val create [a] () : bag a =
10 Empty { head = (); tail = () }
11

12 val insert [a] (consumes x: a, b: bag a) : () =
13 let c = Cell { elem = x; next = () } in
14 c.next <- c;
15 give c to b;
16 match b with
17 | Empty ->
18 tag of b <- NonEmpty;
19 b.head <- c;
20 b.tail <- c
21 | NonEmpty ->
22 take b.tail from b;
23 b.tail.next <- c;
24 give b.tail to b;
25 b.tail <- c
26 end
27

28 val retrieve [a] (b: bag a) : option a =
29 match b with
30 | Empty ->
31 None
32 | NonEmpty ->
33 take b.head from b;
34 let x = b.head.elem in
35 if b.head == b.tail then begin
36 tag of b <- Empty;
37 b.head <- ();
38 b.tail <- ()
39 end else begin
40 b.head <- b.head.next
41 end;
42 Some { value = x }
43 end

Figure 8. A FIFO implementation of bags

just one exclusive permission for the group formed by the list cells,
as opposed to one permission per cell.

We use the name b as a name for this group. When a cell c joins
the group, we say that b adopts c, and when c leaves the group,
we say that b abandons c. In other words, the bag b is an adopter,
and the list cells c are its adoptees. In terms of ownership, adopter
and adoptees form a unit: the exclusive permission that controls b
also represents the ownership of the group, and is required by the
adoption and abandon operations.

Adoption requires and consumes an exclusive permission for
the cell c that is about to be adopted: the ownership of c is trans-
ferred to the group. Conversely, abandon produces an exclusive per-
mission for the cell c that is abandoned: the group relinquishes the
ownership of c.

Abandon must be carefully controlled. If a cell could be aban-
doned twice, two permissions for it would appear, which would be
unsound. Due to aliasing, though, it is difficult to statically prevent
this problem. Instead, we decide to record at runtime which object
is a member of which group, and to verify at runtime that abandon
is used in a safe way.

9 2013/5/7

7.2 Details
Let us now explain in detail the dynamic semantics of adoption and
abandon (what these operations do) as well as their static semantics
(what the type-checker requires).

Adopter fields We maintain a pointer from every adoptee to its
adopter. Within every object, there is a hidden “adopter” field,
which contains a pointer to the object’s current adopter, if it has
one, and null otherwise. This information is updated when an
object is adopted or abandoned. In terms of space, the cost of this
design decision is one field per object. It is possible to lessen this
cost by letting the programmer declare that certain objects cannot
be adopted and don’t need this field.

The type dynamic The permission “c @ dynamic” guarantees
that c is a pointer to a memory block (as opposed to, say, an in-
teger value, or a function value) and grants read access to the field
c.adopter. This can be used to verify the identity of c’s adopter. In
other words, “c @ dynamic” can be viewed as a permission to per-
form a dynamic group membership test. It is a duplicable permis-
sion. It appears spontaneously when c is known to be a (mutable)
object: this is stated by the rule DYNAMICAPPEARS in Figure 6.

In the bag implementation, shown in Figure 8, the head and tail
fields of a non-empty bag object, as well as the next field of every
cell object, have type dynamic (lines 2 and 6). Because dynamic is
duplicable, sharing is permitted: for instance, the pointers b.head
and b.tail might happen to be equal.

Adopts clauses When a cell c is adopted, the exclusive per-
mission that describes it, namely “c @ cell a”, disappears. Only
“c @ dynamic” remains. As a result, the information that c is a cell
is lost: the type-checker can no longer tell how many fields exist
in the object c and what they contain. When the bag b later aban-
dons c, we would like the permission “c @ cell a” to re-appear.
How can the type-checker recover this information?

Fortunately, when b abandons c, the type-checker has access to
the type of b. Thus, provided the type of the adopter determines the
type of its adoptees, this problem is solved.

For an object b of type t to serve as an adopter, where t is
an algebraic data type, we require that the definition of t contain
the clause “adopts u” and that t and u be exclusive types. This
is illustrated in Figure 8, where the definition of “bag a” says
“adopts cell a” (line 7).

Because the type of the adoptees must not be forgotten when an
algebraic data type is unfolded, structural permissions also carry
an adopts clause. In the case of bags, for instance, the permission
“b @ bag a” is refined by the match constructs of lines 16 and 29
into either “b @ Empty { head, tail: () } adopts cell a” or
“b @ NonEmpty { head, tail: dynamic } adopts cell a”, and,
conversely, either of these permissions can be folded back to
“b @ bag a”.

We write that “t adopts u” if either t is an algebraic data type
whose definition contains the clause “adopts u” or t is a structural
type that contains the clause “adopts u”.

Adoption The syntax of adoption is “give c to b”. This in-
struction requires two permissions “c @ u” and “b @ t”, where
t adopts u (GIVE, Figure 4). At the program point that follows this
instruction, the permission “b @ t” remains available, but “c @ u”
has been consumed. Fortunately, not everything about c is forgot-
ten. The permission “c @ dynamic”, which is present before the
adoption instruction because “c @ u” spontaneously gives rise to
“c @ dynamic”, remains present after adoption.

The runtime effect of this operation is to write the address b to
the field c.adopter. The exclusive permission “c @ u” guarantees
that this field exists and that its value, prior to adoption, is null.

In the bag implementation (Figure 8), adoption is used at the
beginning of insert (line 15), after a fresh cell c has been allocated
and initialized. This allows us to maintain the (unstated) invariant
that every cell that is reachable from b is adopted by b.

Abandon The syntax of abandon is “take c from b”. This in-
struction requires “b @ t” and “c @ dynamic”, where t adopts “u”,
for some type u (TAKE, Figure 4). After this instruction, “b @ t”
remains available. Furthermore, the permission “c @ u” appears.

The runtime effect of this operation is to check that the field
c.adopter contains the address b and to write null into this field,
so as to reflect the fact that b abandons c. If this check fails, the
execution of the program is aborted.

In the bag implementation (Figure 8), abandon is used near
the beginning of retrieve, at line 33. There, the first cell in the
queue, b.head, is abandoned by b. This yields a permission at type
“cell a” for this cell. This permission lets us read b.head.elem
and b.head.next and allows us to produce the permission “x @ a”,
where x is the value found in b.head.elem.

Abandon and adoption are also used inside insert, at lines 22
and 24. There, the bag b is non-empty, and the cell b.tail must
be updated in order to reflect the fact that it is no longer the
last cell in the queue. However, we cannot just go ahead and ac-
cess this cell, because the only permission that we have at this
point for this cell is at type “dynamic”. Instead, we must take
the cell out of the group, update it, and put it back. This well-
parenthesized use of take and give is related to Fähndrich and De-
Line’s “focus” [16] and to Sing#’s “expose” [15]. We allow writing
“taking b.tail from b begin ... end” as sugar for such a well-
parenthesized use.

7.3 Discussion
To the best of our knowledge, adoption and abandon are new.
Naturally, the concept of group, or region, has received sustained
interest in the literature [11, 12, 16, 31]. Regions are usually viewed
either as a dynamic memory management mechanism or as a purely
static concept. Adoption and abandon, on the other hand, offer a
dynamic ownership control mechanism, which complements our
static permission discipline.

Adoption and abandon are a very flexible mechanism, but also
a dangerous one. Because abandon involves a dynamic check, it
can cause the program to encounter a fatal failure at runtime. In
principle, if the programmer knows what she is doing, this should
never occur. There is some danger, but that is the price to pay for a
simpler static discipline. After all, the danger is effectively less than
in ML or Java, where a programming error that creates an undesired
alias goes completely undetected—until the program misbehaves in
one way or another.

One might wonder why the type dynamic is so uninformative:
it gives no clue as to the type of the adoptee or the identity of the
adopter. Would it be possible to parameterize it so as to carry either
information? The short answer is negative. The type dynamic is
duplicable, so the information that it conveys should be stable (i.e.,
forever valid). However, the type of the adoptee, or the identity
of the adopter, may change with time, through a combination of
strong updates and give and take instructions. Thus, it would not
make sense for dynamic to carry more information.

That said, we believe that adoption and abandon will often
be used according to certain restricted protocols, for which more
information is stable, hence can be reflected at the type level.
For instance, in the bag implementation, a cell only ever has one
adopter, namely a specific bag b. In that case, one could hope to
work with a parameterized type dynamic′ b, whose meaning would
be “either this object is currently not adopted, or it is adopted by b”.
Ideally, dynamic′ would be defined on top of dynamic in a library
module, and its use would lessen the risk of confusion.

10 2013/5/7

abstract nests (x : term) (p : perm) : perm
fact duplicable (nests x p)

val nest:
[p : perm , a]
exclusive a =>
(x: a | consumes p) ->
(| nests x p)

abstract punched (a : type) (p : perm) : type

val focus:
[p : perm , a]
exclusive a =>
(consumes x: a | nests x p) ->
(| x @ punched a p * p)

val defocus:
[p : perm , a]
(consumes (x: punched a p | p)) ->
(| x @ a)

Figure 9. A simplified axiomatization of nesting

Tag update Our implementation of bags exploits the fact that it is
permitted to mutate not just the fields, but also the tag of a mutable
object. An object of type “bag a” carries either the tag Empty, in
which case the head and tail fields have the unit type (), or the
tag NonEmpty, in which case these fields have type dynamic. When
the status of a bag b changes from empty to non-empty (lines 18–
20) or vice-versa (lines 36–38), we reflect this change by updating
the tag and the fields of b. At line 18, for instance, the permission
that describes b is:

b @ Empty { head , tail : () }
adopts cell a

After the tag update instruction, it is replaced with:

b @ NonEmpty { head , tail: () }
adopts cell a

This structural permission may seem disturbing, because it cannot
be folded back to “b @ bag a”. This is not a problem: at this point,
nothing requires us to produce the permission “b @ bag a”. After
the second assignment, the current permission is:

b @ NonEmpty { head = c; tail: () }
adopts cell a

Finally, after the last assignment, the current permission is:

b @ NonEmpty { head = c; tail = c }
adopts cell a

Because we also have “c @ dynamic” and because dynamic is du-
plicable, this permission can be folded back to “b @ bag a”, so
that, when insert completes, we are able to return “b @ bag a”,
as promised.

8. Other means of permitting sharing
Adoption and abandon is not the only way of sharing mutable data.
We now describe two other mechanisms, namely nesting and locks.

8.1 Nesting
Nesting [7] is a mechanism by which an object x adopts (so to
speak) a permission P . It is a purely static mechanism. The act of
nesting P in x has no runtime effect, but consumes P and produces
a witness, a permission which Boyland writes P ≺ x. Because
nesting is irreversible, such a witness is duplicable.

abstract lock (p: perm)
fact duplicable (lock p)
val new: [p: perm] (| consumes p) -> lock p
val acquire: [p: perm] (l: lock p) -> (| p)
val release: [p: perm] (l: lock p

| consumes p) -> ()

Figure 10. A simplified axiomatization of locks

Once P has been nested in x, whoever has exclusive owner-
ship of x may decide to temporarily recover P . This is done via
two symmetric operations, say “focus” and “defocus”, which in the
presence of P ≺ x convert between x@ t and P ∗ (P −+x@ t)
(where the type t is arbitrary, but must be exclusive). The permis-
sion P −+x@ t means that P has been “carved out” of x. While
this is the case, x@ t is temporarily lost: in order to recover it, one
must give up P . Thus, it is impossible to simultaneously carve two
permissions out of x.

Nesting subsumes Fähndrich and DeLine’s adoption and focus
[16]. We view it as a purely static cousin of adoption and abandon.
Adoption is more flexible in several important ways: it allows ac-
cessing two adoptees at the same time, and allows abandoning an
object forever. Nesting has advantages over adoption and abandon:
it cannot fail at runtime; it has no time or space overhead; one may
nest a permission, whereas one adopts an object; and nesting is het-
erogeneous, i.e., an object x can nest multiple distinct permissions,
whereas, in the case of adoption and abandon, all adoptees of x
must have the same type.

Nesting can be axiomatized in Mezzo as a library, whose in-
terface appears in Figure 9. In principle, this requires extending
the meta-theoretic proof of type soundness; we have not yet done
so. We believe that, if applicable, nesting is preferable to adoption.
However, adoption and abandon is more widely applicable.

In the case of bags (§7), retrieve takes a cell out of the group
in order to extract the element that it contains. If one chooses
to use nesting instead of adoption and abandon, then one cannot
permanently take the cell out of the group. Thus, the cell must
remain in the group; but, in that case, one must take the ownership
of the element away from the cell. This forces one to allow a cell
to possibly contain no element, hence re-introduces the need for a
dynamic check.

8.2 Locks
Dynamically-allocated locks in the style of concurrent separation
logic [25, 18, 19, 8] are another dynamic mechanism for mediating
access to a permission. A new lock, of type lock P , where P is an
arbitrary permission, is created via a function new. The functions
acquire and release both take the lock as an argument; acquire
produces the permission P , which release consumes. The type
lock P is duplicable, so an arbitrary number of threads can share
the lock and simultaneously attempt to acquire it. Within a critical
section, delimited by acquire and release, the “lock invariant” P
is available, whereas, outside of it, it is not. The “invariant” P can
in fact be broken within the critical section, provided it is restored
when one reaches the end of the section.

Locks introduce a form of hidden state into the language. Be-
cause the permission l@ lock P is duplicable, it can be captured
by a closure. As a result, it becomes possible for a function to per-
form a side effect, even though its type does not reveal this fact
(the pre- and postcondition are empty). Mezzo’s modest library for
memoization exploits this feature.

Locks can be used to encode “weak” (duplicable) references in
the style of ML and duplicable references with affine content in the
style of Alms [32], both of which support arbitrary sharing.

11 2013/5/7

Locks can be axiomatized in Mezzo as a library, whose interface
appears in Figure 10. Again, this requires extending the proof
of type soundness; we have not yet done so. We view locks as
complementary to adoption and abandon and nesting. In a typical
usage scenario, a lock protects an adopter, which in turn controls a
group of adoptees (or of nested permissions). This allows a group
of objects to be collectively protected by a single lock. It should
be noted that (we believe) adoption and abandon are sound in a
concurrent setting.

9. Related work
The literature offers a wealth of type systems and program logics
that are intended to help write correct programs in the presence of
mutable, heap-allocated state. We review a few of them and contrast
them with Mezzo.

Ownership Types [10] and its descendants restrict aliasing. Ev-
ery object is owned by at most one other object, and an “owner-
as-dominator” principle is enforced: every path from a root to an
object x must go through x’s owner. Universe Types [14] impose
a slightly different principle, “owner-as-modifier”. Arbitrary paths
are allowed to exist in the heap, but only those that go through x’s
owner can be used to modify x. This approach is meant to support
program verification, as it allows the owner to impose an object in-
variant. Permission systems [5, 7, 17] annotate pointers not with
owners, but with permissions. The permission carried by a pointer
tells how this pointer may be used (e.g. for reading and writing,
only for reading, or not at all) and how other pointers to the same
object (if they exist) might be used by others.

The systems mentioned so far are refinements (restrictions) of a
traditional type discipline. Separation logic [28] departs from this
approach and obeys a principle that we dub “owner-as-asserter”.
(In O’Hearn’s words, “ownership is in the eye of the asserter” [25].)
Objects are described by logical assertions. To assert is to own: if
one knows that “x is a linked list”, then one may read and write the
cells that form this list, and nobody else may. Whereas the pre-
viously mentioned systems combine structural descriptions (i.e.,
types) with owner or permission annotations, separation logic as-
sertions are at once structural descriptions and claims of ownership.

Mezzo follows the “owner-as-asserter” principle. In the future,
this should allow us to annotate permissions with logical assertions
and use that as a basis for the specification and proof of Mezzo
programs. A tempting research direction is to translate Mezzo into
F? [30]. This purely functional programming language is equipped
with affine values, with powerful facilities for expressing program
specifications and proofs, and with a notion of proof erasure.

Although our permission discipline is partly inspired by sepa-
ration logic [28], it is original in several ways. It presents itself as
a type system, as opposed to a program logic. This makes it less
expressive than a program logic, but more pervasive, in the sense
that it can (and must) be used at every stage of a program’s de-
velopment, without proof obligations. It distinguishes between im-
mutable and mutable data, supports first-class functions, and takes
advantage of algebraic data types in novel ways.

As far as we know, Ownership or Universe Types cannot express
uniqueness or ownership transfer. Müller and Rudich [23] extend
Universe Types with these notions. They rely on the fact that each
object maintains, at runtime, a pointer to its owner. The potential
analogy with our adopter fields deserves further study.

The use of singleton types to keep track of equations, and the
idea that pointers can be copied, whereas permissions are affine,
are inspired by Alias Types [29]. Linear [1] and affine [32] type
systems support strong updates and often view permissions (or
“capabilities”) as ordinary values, which hopefully the compiler
can erase. By offering an explicit distinction between permissions
and values, we guarantee that permissions are erased, and we are

able to make the flow of permissions mostly implicit. Through
algebraic data types and through the type constructor (t | P), we
retain the ability to tie a permission to a value, if desired.

Regions [29, 16, 1] have been widely used as a technical device
that allows a type to indirectly refer to a value or set of values.
In Mezzo, types refer to values directly. This simplifies the meta-
theory and the programmer’s view.

Gordon et al. [17] ensure data-race freedom in an extension
of C#. They qualify types with permissions in the set immutable,
isolated, writable, or readable. The first two roughly correspond
to our immutable and mutable modes, whereas the last two have
no Mezzo analogue. Shared (writable) references allow legacy se-
quential code to be considered well-typed. A salient feature is the
absence of an alias analysis, which simplifies the system consider-
ably. This comes at a cost in expressiveness: mutable global vari-
ables, as well as shared objects protected by locks, are disallowed.

Plaid [2] and Mezzo exhibit several common traits. A Plaid ob-
ject does not belong to a fixed class, but can move from one “state”
to another: this is related to Mezzo’s tag update. Methods carry state
pre- and postconditions, which are enforced via permissions [5].
Plaid is more ambitious in that states are organized in an extensible
hierarchy, whereas algebraic data types are flat and closed.

10. Conclusion and future work
Mezzo is a high-level functional and imperative programming lan-
guage where the traditional concept of “type” is replaced with a
more powerful concept of “permission”. Distinguishing between
duplicable, exclusive, and affine permissions allows reasoning
about state changes. We strive to achieve a balance between sim-
plicity and expressiveness by marrying a static discipline of per-
missions and a novel dynamic form of adoption and abandon. By
adding other mechanisms for controlling sharing, such as nesting
and locks, we augment the expressiveness of the language and em-
phasize that the permission discipline is sufficiently powerful to
express these notions. Mezzo is type-safe: well-typed programs
cannot go wrong (but an abandon operation can fail). We have
carried out a machine-checked proof of type safety [26].

In the future, we would like to extend Mezzo with support
for shared-memory concurrency. We believe that, beyond locks
(§8.2), many abstractions (threads, channels, tasks, etc.) can be
axiomatized so as to guarantee that well-typed code is data-race-
free.

A. Surface syntax
So far, we have been fairly imprecise regarding the syntax of
Mezzo. The examples shown in sections 2 and 7 use special syntac-
tic conventions, while the formal definition of the typing rules (§5)
does not take them into account. This section clarifies the rules for
the syntax of Mezzo.

We saw in various examples that the user is allowed to write
name introductions, consumes keywords, and benefits from a spe-
cial convention for function types; conversely, the internal syntax
has no such convention for function types, and makes no use of the
other two constructs. Thus, there is a difference between the syn-
tax that the user manipulates, which we call the external syntax (or
surface syntax), and the representation that Mezzo internally uses,
which we call the internal syntax.

Section 6 briefly detailed the differences between the two syn-
taxes, as well as the procedure one can use to convert from the
former to the latter. We now formally define the syntax of Mezzo.
We separate external constructs from internal constructs; we intro-
duce kind-checking rules; we define what it means for a type in
the surface syntax to be well-formed; we show how to translate the
constructs from the surface syntax into constructs from the inter-

12 2013/5/7

T, t, P ::= type or permission
. . .
t→ t internal function type
t t external function type
. . .

e ::= expression
. . .
λ(x : t) : t. e internal anon. function
Λ(X : κ). e type abstraction
fun [~X : ~κ] t : t = e external anon. function
. . .

Figure 11. Separating external and internal syntaxes

nal syntax. We also show that the translation preserves the well-
kindedness properties of a type.

A.1 Differentiating the two syntaxes
As section 6 explained, the interpretation of an arrow type differs,
depending on whether one uses the surface syntax or the internal
syntax. To account for that difference, we clarify what we mean
when writing an arrow type: an arrow type is either the external
variant, or the internal variant. These two arrows are now denoted
by different symbols (Figure 11).

Therefore, we do not see the external and internal syntaxes as
two separate syntactical categories; rather, they are both restrictions
of the general syntax of types. The external arrow, the name in-
troduction, and the consumes keyword (all underlined) may only
appear in the external syntax, while the internal arrow may only
appear in the internal syntax. As the name implies, the internal ar-
row is not exposed to the user. All other constructs may be used
freely both in the external and internal syntaxes.

Thus, translating from the external syntax to the internal version
amounts to removing all the underlined constructs, replacing them
with other constructs.

Function expressions need to be translated as well, as an ex-
pression of the form fun t1 : t2 = e contains an implicit function
type t1 t2, meaning the function declaration benefits from the
same syntactical conventions as the corresponding external func-
tion type. Furthermore, the external syntax for anonymous func-
tions admits a type as its argument, which is then interpreted as
a pattern. For instance, (x : t, y : u) is a tuple type, which we
interpret later on as a pattern binding names x and y. In order to
clarify this as well, we introduce a syntax for internal anonymous
functions (Figure 11), which is closer to the one found in the λ-
calculus. We write an internal function as λ(x : t1) : t2. e, where
x is the name of the argument, bound in the function body e, t1 the
type of argument x and t2 the return type for the function.

A.2 Binding rules
A.2.1 Environments
To keep track of the names that are available in the current context,
we introduce naming environments. They are denoted as Γ, and
are made up of lists of pairs (x, κ) where x is the name of the
binder and κ its kind. Adding a variable into an environment masks
the previous definition of the variable. Concatenating environments
with masking is done using a semicolon, as in Γ1; . . . ; Γn.

When merging several environments, we may wish to assert that
the environments Γi do not bind the same names. We use

⊎
Γi for

that purpose.

A.2.2 Non-lexical scope
We want to define the kinding rules for the entire syntax of Mezzo;
that is, we do not want a separate set of rules for both the external
and the internal syntax. Thus, the kinding rules should operate
on both syntaxes; in particular, we need to define kinding rules
on the external syntax. This means that we ought to clarify the
binding rules that govern the usage of our special name introduction
construct x : t.

Our rules for binding names are non-standard, in the sense
that we separate the name introduction and the binding point: our
binders are not lexically-scoped.

As an example, consider the type of the := function, which
assigns a value into a reference (as seen in §6). Our references have
a unique owner, which makes it possible for this function to change
the type of the reference. As a consequence, the post-condition of
the function needs to mention the function argument.

∀a, b.(consumes x : ref a, consumes b) (| x@ ref b)

In this arrow type, the name x is made available both on the left-
hand side of the function, and in the right-hand side; x is not
lexically scoped. We say that the left-hand side of this function type
introduces the name x, and that the binding point for the name x is
immediately above the function type.

The user may want to introduce names at arbitrary depth: under
a consumes keyword, in the field of a concrete data type, in a tu-
ple. . . Therefore, even though a name may be introduced in-depth,
we want it to be reachable as broadly as possible. For that pur-
pose, we “collect” the names that appear in a type, and make them
available in the entire type. In the example above, the name x is
collected and made available everywhere in the function type.

The collection procedure should only descend into certain types,
which we call transparent. Transparent types are conjunctive in
nature: structural types (tuples, concrete types) and conjunctions
(mode and type, permission and type, permission and permission)
are transparent. It is unclear whether some constructs should be
transparent or not; there is a design space to explore, and we
chose to make some constructs opaque. For instance, names are
not collected below quantifiers.

We introduce the BV function (Figure 13), where BV (t) is
the set of names introduced by type t. This function recursively
descends into transparent constructs and stops at opaque constructs.
Therefore, any traversal of a type will need to operate consistently
with BV . More precisely, after traversing an opaque construct, it
is mandatory to extend the working environment with the names
found below the construct, before resuming the traversal.

The kinding rules naturally operate consistently with BV ,
through the use of Γ `I t : κ, which first extends Γ with the
names found in t before kind-checking t. As an example, the kind-
checking rules for the opaque construct ∀(x : κ) u rely on `I in
their premise. In the particular case of the external function type
t1 t2, the names that t1 introduces are made available in t2 as
well.

In the rest of the discussion, we assume environments to also
contain the names of all the data types, along with their respective
kinds (Figure 13).

A.3 Kinding rules
Kind-checking is defined in Figure 12. The relation performs sev-
eral checks simultaneously:

• it ensures that all types are well-kinded;
• it ensures that all names are bound according to the binding

rules of the surface syntax;
• it ensures that consumes annotations only appear in the left-

hand side of an arrow type;

13 2013/5/7

K-VAR
(x, κ) ∈ Γ

Γ, s ` x : κ

K-UNKNOWN

Γ, s ` unknown : type

K-DYNAMIC

Γ, s ` dynamic : type

K-ARROW
Γ, right ` t1 : type Γ, right ` t2 : type

Γ, s ` t1 → t2 : type

K-EARROW
Γ′ = Γ;BV (t1) Γ′, left ` t1 : type Γ′ `I t2 : type

Γ, s ` t1 t2 : type

K-TUPLE
Γ, s ` ti : type

Γ, s ` (t1, . . . , tn) : type

K-CONCRETE
Γ, s ` ti : type

Γ, s ` A {fi : ti} : type

K-FORALL
Γ′ = Γ; (x, κ′) Γ′ `I t : κ

Γ, s ` ∀(x : κ′) t : κ

K-EXISTS
Γ′ = Γ; (x, κ′) Γ′ `I t : κ

Γ, s ` ∃(x : κ′) t : κ

K-APP
Γ `I t : κi → κ Γ `I ti : κi

Γ, s ` t ti : κ

K-NAMEINTRO
(x, term) ∈ Γ Γ, s ` t : type

Γ, s ` (x : t) : type

K-CONSUMES
Γ, right ` t : κ κ = type or κ = perm

Γ, left ` consumes t : κ

K-BAR
Γ, s ` t : type Γ, s ` p : perm

Γ, s ` (t | p) : type

K-SINGLETON
(x, term) ∈ Γ

Γ, s ` =x : type

K-AND
Γ, s ` t1 : perm or Γ, s ` t1 : type Γ, s ` t2 : κ

Γ, s ` mt1 ∧ t2 : κ

K-EMPTY

Γ, s ` empty : perm

K-PERM
Γ, s ` p : perm Γ, s ` q : perm

Γ, s ` p ∗ q : perm

K-ANCHORED
(x, term) ∈ Γ Γ, s `I t : type

Γ, s ` x@ t : perm

K-EXTEND
Γ′ = Γ;BV (t) Γ′, right ` t : κ

Γ `I t : κ

Figure 12. Kinding rules

• it ensures that all type applications are complete; no partial type
applications are allowed, as our system explicitly disallows it.

Our well-kindedness judgements are of the form Γ ` t : κ,
meaning that in environment Γ, the type t satisfies all the above
conditions, and has kind κ. We intentionally restricted the form of
rules K-ANCHORED and K-SINGLETON; since the only types with
kind term are variables, we made it explicit that the only well-
kinded singleton types and atomic permissions are of the form =x
and x@ t.

In order to ensure that consumes annotations only appear in the
left-hand side of an arrow type, we introduce an extra s variable.
In the case of the K-CONSUMES, the side s has to be left. Initially,
the side is right, and changes to left as soon as one sees an external
arrow (K-EARROW).

We define a `I variant, which sets the side to right, meaning
that no consumes annotation may appear here, and extends the en-
vironment with the names introduced by t. As explained before, the
kind-checking relation needs to be consistent with the BV func-
tion. Therefore, this variant is used whenever an opaque construct
is crossed, such as in the premise of K-FORALL. The relation `I is
also the entry point of the kind-checking relation, which we use to
check top-level data types definitions, as well as types that appear
in expressions, for instance in function definitions or type annota-
tions.

One important rule is K-ARROW. Both t1 and t2 are checked
in an environment Γ′ which contains the names introduced by t1.
This means that the names introduced in the domain t1 of the
function are available in both the domain t1 and the codomain t2,
while names introduced in the codomain t2 remain available in the
codomain only.

A.4 Translating the surface syntax
In order to translate from the surface syntax down to the inter-
nal syntax, three constructs must be removed: name introductions,
consumes annotations and external arrows. We describe a set of

BV (t) = Γ

BV (x : t) = (x, term)
BV ((~t)) =

⊎
BV (~t)

BV (A {~f : ~t} adoptsu) =
⊎
BV (~t)

BV ((t | P)) = BV (t)
BV (consumes T) = BV (T)
BV (X) = nil
BV (t→ t) = nil
BV (t t) = nil
BV (T ~T) = nil
BV (∀(X : κ) T) = nil
BV (∃(X : κ) T) = nil
BV (=x) = nil
BV (dynamic) = nil
BV (x@ t) = nil
BV (empty) = nil
BV (P ∗ P) = nil

BV (mutable? data d (~a : ~κ)) = (d,~κ→ type)
BV (abstract d (~a : ~κ) : κr) = (d,~κ→ κr)

Figure 15. Collecting the names introduced by a type

transformations that perform the translation from the surface syn-
tax down to the internal syntax.

The translation step assumes that all well-formedness checks (as
described in §A.2.2) have been performed.

A.4.1 Removing name introductions
We first need to remove all name introductions, that is, constructs of
the form x : t. The binding checks have been performed in the kind-
checking process already; in order to ensure that the translation
is faithful to the binding rules implemented by the kind-checking
process, we need to make sure that for every call to `I performed

14 2013/5/7

T-VAR

x B x

T-UNKNOWN

unknown B unknown

T-DYNAMIC

dynamic B dynamic

T-TUPLE
ti B t

′
i

(t1, . . . , tn) B (t′1, . . . , t
′
n)

T-CONCRETE
ti B t

′
i

A {fi : ti} B A {fi : t′i}

T-APP
ti I t

′
i t I t′

t ti B t
′ t′i

T-NAMEINTRO
t B t′

x : t B (=x | x@ t′)

T-CONSUMES
t B t′

consumes t B consumes t′

T-FORALL
t I t′

∀(x : κ) t B ∀(x : κ) t′

T-EXISTS
t I t′

∃(x : κ) t B ∃(x : κ) t′

T-BAR
t B t′ p B p′

(t | p) B (t′ | p′)

T-SINGLETON

=x B =x

T-AND
t1 B t

′
1 t2 B t

′
2

mt1 ∧ t2 B mt′1 ∧ t′2

T-EMPTY

empty B empty

T-STAR
p B p′ q B q′

p ∗ q B p′ ∗ q′

T-ANCHORED
t I t′

x@ t B x@ t′

T-EXTEND-EXISTS
Γ = BV (t) t B t′

t I ∃Γ t′

T-EARROW
Γ1 = BV (t1) t1 B t

′
1 t2 I t

′
2

t′1,l = [τ/consumes τ]t′1 t′1,r = [>/consumes τ]t′1

t1 t2 B ∀Γ1 ∀(r : term) (=r | r@ t′1,l)→ (t′2 | r@ t′1,r)

Figure 13. Translating types

T-ANNOT
t I t′ e B e′

(e : t) B (e′ : t′)

T-ETAPPLY
t I t′ e B e′

(e [t : κ]) B (e′ [t′ : κ])

T-FUN

t u I ∀(~X ′ : ~κ′) t′ → u′ p = type2pattern(t) e B e′

fun [~X : ~κ] t : u = e B
Λ(~X : ~κ). Λ(~X ′ : ~κ′). λ(x : t′) : u′. let p = x in e′

Figure 14. Translating expressions

in the kind-checking rules, we introduce explicit binders, either
existential or universal.

We introduce our translation B, and a variant I, defined in rule
T-EXTEND-EXISTS, which introduces explicit existential binders to
account for the names introduced by a type. For every use of `I in
the kinding rules, the translation makes use of I.

Lemma 1 (Well-kindedness preservation). If t is well-kinded, i.e.
Γ `I t : κ, and t translates to t′, i.e. t I t′, then t′ is similarly
well-kinded, i.e. Γ `I t′ : κ.

The one explicit call to BV in the kinding rules (K-EARROW)
is reflected by call to BV in the corresponding translation rule
(T-EARROW). This defines names introduced by the domain t1 of
a function type t1 t2 to be universally quantified binders,
enclosing an internal arrow.

The rule T-NAMEINTRO describes what one means when using a
name introduction: x : t represents both a pointer to an element
named x, and a permission stating that x has type t. As B is
consistent with BV , we can assume that the variable x has been
introduced via an explicit binder above us.

Lemma 2 (Name introduction removals). If t I t′, then t′ contain
no occurrences of the name introduction construct.

As an example, consider a type (x : t,=x). This type annota-
tion describes the type of a tuple whose two components are equal;
we name them x, and x has type t. This type will be translated
using I into:

∃(x : term).((=x | x@ t),=x)

A.4.2 Interpreting consumes annotations
The consumes keyword receives a special treatment. The kind-
checking rules made sure consumes keywords only appear in the
left-hand side of external arrows. Rule T-EARROW therefore defines
how to interpret consumes annotations that appear in the domain

of an external arrow. This translation step changes the meaning of
function types; hence, it goes from the external arrow to the
internal arrow→.

The consumes keyword is all about ownership: intuitively, the
ownership of a function argument will be, by default, returned to
the caller, except for the sub-parts of the arguments that are marked
with a consumes keyword.

Let us now describe the meaning of the rule in greater detail. We
write [t1/t2]t as “substitute t1 for t2 in t”;> is understood to mean
either unknown (which has kind type) or empty (which has kind
perm) depending on which one is appropriate. We introduce a name
for the argument, so that we can talk about it in the post-condition
of the function. We then take a permission for the “full” argument,
and return a modified permission for the argument, where all parts
marked as being consumed have been “carved out”.

One important property is that t′1 no longer contains name
introductions, as they have been removed by the recursive call to
B. This is important: name introductions only make sense with the
semantics of the external arrow and have no meaning when using
within an internal arrow.

Lemma 3 (Consumes and external arrow removals). If t I t′,
then t′ contain no occurrences of the consumes keyword and of the
external arrow .

The consumes keyword can appear at any depth in the type of
the argument: a sophisticated function may wish, for instance, to
consume the ownership of just a single field of a data structure.

As a final example, consider the type of the swap function, that
swaps the two components of a mutable pair. The type of this
function can be written, with the surface syntax conventions, as
[a,b] (consumes x: mpair a b) -> (| x @ mpair b a), which
we believe is concise, yet intuitive notation for the internal type,
which we saw earlier:

∀a.∀b.∀(x : term)(=x | x@ mpair a b)→ (| x@ mpair b a)

15 2013/5/7

Affine

Duplicable Exclusive

Figure 18. The hierarchy of modes

A.4.3 Translating expressions
Expressions may contain types. Types appear for instance in type
applications, which are used for instantiating polymorphic calls;
they also appear in type annotations. We extend B and define a
translation for these expressions. The rules, which are to be found
in Figure 14, simply perform a translation of the types using I.

A more complex rule is T-FUN, which translates an external
anonymous function into an internal one. Let us review the various
steps of this translation. The external anonymous function already
contains universal, user-provided quantifiers: these are translated
using Λ-abstractions. The external arrow type t u is translated
using a combination of universal quantifications and an internal
arrow type: we insert another set of Λ-abstraction to account for
the implicit universal quantifications at kind term. Next, we need
to interpret t as a pattern p; we omit the details of this procedure.
Finally, the internal λ-abstraction takes a single argument which we
name x; we recover the names that the user provided by binding the
pattern p to variable x in the body of the λ-abstraction.

We trivially extend B to be the identity for the other constructs
in the syntax of expressions.

B. Modes and facts
We have mentioned previously (§4.1, Figure 4) predicates of the
form “is duplicable” or “is exclusive”. We now provide a formal
definition of those predicates, as well as a more general form which
we call a fact. We define modes and facts, both of which belong to
a lattice, and we give details for their computation.

Modes form a lattice shown in Figure 18. Any type can be
affine, but affine is a strict superset of duplicable and exclusive
(§4.1). We define two mutually exclusive judgements “t is duplicable”
and “t is exclusive” (Figure 16, Figure 17). A type that satisfies nei-
ther judgement is affine.

The “t is duplicable” judgement is defined co-inductively. Rule
D-APP states that a type application is duplicable if and only if all
the unfoldings of the type being applied are themselves duplicable.

The “t is exclusive” is only defined for a small subset of types,
as the only exclusive types are concrete types and type applications
that belong to an mutable-defined data type.

References
[1] Amal Ahmed, Matthew Fluet, and Greg Morrisett. L3: A linear

language with locations. Fundamenta Informaticæ, 77(4):397–449,
2007.

[2] Jonathan Aldrich, Joshua Sunshine, Darpan Saini, and Zachary
Sparks. Typestate-oriented programming. In Companion to Object-
Oriented Programming, Systems, Languages, and Applications (OOP-
SLA), pages 1015–1022, 2009.

[3] Mike Barnett, K. Rustan M. Leino, and Wolfram Schulte. The Spec#
programming system: An overview. In Construction and Analysis of
Safe, Secure and Interoperable Smart devices (CASSIS), volume 3362
of Lecture Notes in Computer Science, pages 49–69. Springer, 2004.

[4] Josh Berdine, Cristiano Calcagno, and Peter W. O’Hearn. Smallfoot:
Modular automatic assertion checking with separation logic. In For-

mal Methods for Components and Objects, volume 4111 of Lecture
Notes in Computer Science, pages 115–137. Springer, 2005.

[5] Kevin Bierhoff and Jonathan Aldrich. Modular typestate checking
of aliased objects. In Object-Oriented Programming, Systems, Lan-
guages, and Applications (OOPSLA), pages 301–320, 2007.

[6] Kevin Bierhoff, Nels E. Beckman, and Jonathan Aldrich. Practical
API protocol checking with access permissions. In European Con-
ference on Object-Oriented Programming (ECOOP), volume 5653 of
Lecture Notes in Computer Science, pages 195–219. Springer, 2009.

[7] John Tang Boyland. Semantics of fractional permissions with nesting.
ACM Transactions on Programming Languages and Systems, 32(6),
2010.

[8] Alexandre Buisse, Lars Birkedal, and Kristian Støvring. A step-
indexed Kripke model of separation logic for storable locks. Elec-
tronic Notes in Theoretical Computer Science, 276:121–143, 2011.

[9] Arthur Charguéraud. Characteristic Formulae for Mechanized Pro-
gram Verification. PhD thesis, Université Paris 7, 2010.

[10] David G. Clarke, John M. Potter, and James Noble. Ownership types
for flexible alias protection. In Object-Oriented Programming, Sys-
tems, Languages, and Applications (OOPSLA), pages 48–64, 1998.

[11] Karl Crary, David Walker, and Greg Morrisett. Typed memory man-
agement in a calculus of capabilities. In Principles of Programming
Languages (POPL), pages 262–275, 1999.

[12] Robert DeLine and Manuel Fähndrich. Enforcing high-level proto-
cols in low-level software. In Programming Language Design and
Implementation (PLDI), pages 59–69, 2001.

[13] Robert DeLine and Manuel Fähndrich. Typestates for objects. In
European Conference on Object-Oriented Programming (ECOOP),
volume 3086 of Lecture Notes in Computer Science, pages 465–490.
Springer, 2004.

[14] Werner Dietl and Müller Peter. Universes: Lightweight ownership for
JML. Journal of Object Technology, 4(8):5–32, 2005.

[15] Manuel Fähndrich, Mark Aiken, Chris Hawblitzel, Orion Hodson,
Galen Hunt, James R. Larus, and Steven Levi. Language support for
fast and reliable message-based communication in Singularity OS. In
EuroSys, pages 177–190, 2006.

[16] Manuel Fähndrich and Robert DeLine. Adoption and focus: practical
linear types for imperative programming. In Programming Language
Design and Implementation (PLDI), pages 13–24, 2002.

[17] Colin S. Gordon, Matthew J. Parkinson, Jared Parsons, Aleks Brom-
field, and Joe Duffy. Uniqueness and reference immutability for safe
parallelism. In Object-Oriented Programming, Systems, Languages,
and Applications (OOPSLA), pages 21–40, 2012.

[18] Alexey Gotsman, Josh Berdine, Byron Cook, Noam Rinetzky, and
Mooly Sagiv. Local reasoning for storable locks and threads. Techni-
cal Report MSR-TR-2007-39, Microsoft Research, 2007.

[19] Aquinas Hobor, Andrew W. Appel, and Francesco Zappa Nardelli.
Oracle semantics for concurrent separation logic. In European Sym-
posium on Programming (ESOP), volume 4960 of Lecture Notes in
Computer Science, pages 353–367. Springer, 2008.

[20] Bart Jacobs and Frank Piessens. The VeriFast program verifier. Tech-
nical Report CW-520, Department of Computer Science, Katholieke
Universiteit Leuven, 2008.

[21] Toshiyuki Maeda, Haruki Sato, and Akinori Yonezawa. Extended
alias type system using separating implication. In Types in Language
Design and Implementation (TLDI), 2011.

[22] Yasuhiko Minamide. A functional representation of data structures
with a hole. In Principles of Programming Languages (POPL), pages
75–84, 1998.

[23] Peter Müller and Arsenii Rudich. Ownership transfer in universe
types. In Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA), pages 461–478, 2007.

[24] Karl Naden, Robert Bocchino, Jonathan Aldrich, and Kevin Bierhoff.

16 2013/5/7

http://ttic.uchicago.edu/~amal/papers/linloc-fi07.pdf
http://ttic.uchicago.edu/~amal/papers/linloc-fi07.pdf
http://www.cs.cmu.edu/~aldrich/papers/onward2009-state.pdf
http://research.microsoft.com/~leino/papers/krml136.pdf
http://research.microsoft.com/~leino/papers/krml136.pdf
http://research.microsoft.com/~jjb/papers/smallfoot.pdf
http://research.microsoft.com/~jjb/papers/smallfoot.pdf
http://www.cs.cmu.edu/~kbierhof/papers/typestate-verification.pdf
http://www.cs.cmu.edu/~kbierhof/papers/typestate-verification.pdf
http://www.cs.cmu.edu/~kbierhof/papers/permission-practice.pdf
http://www.cs.cmu.edu/~kbierhof/papers/permission-practice.pdf
http://www.cs.uwm.edu/~boyland/papers/frac-nesting.html
http://www.itu.dk/~birkedal/papers/locks.pdf
http://www.itu.dk/~birkedal/papers/locks.pdf
http://www.chargueraud.org/arthur/research/2010/thesis/
http://www.chargueraud.org/arthur/research/2010/thesis/
http://doi.acm.org/10.1145/286936.286947
http://doi.acm.org/10.1145/286936.286947
http://www.cs.cornell.edu/talc/papers/capabilities.pdf
http://www.cs.cornell.edu/talc/papers/capabilities.pdf
http://research.microsoft.com/apps/pubs/default.aspx?id=67457
http://research.microsoft.com/apps/pubs/default.aspx?id=67457
http://research.microsoft.com/apps/pubs/default.aspx?id=67463
http://www.jot.fm/issues/issue_2005_10/article1.pdf
http://www.jot.fm/issues/issue_2005_10/article1.pdf
http://www.cs.kuleuven.ac.be/conference/EuroSys2006/papers/p177-fahndrich.pdf
http://www.cs.kuleuven.ac.be/conference/EuroSys2006/papers/p177-fahndrich.pdf
http://research.microsoft.com/pubs/67459/pldi02.pdf
http://research.microsoft.com/pubs/67459/pldi02.pdf
http://homes.cs.washington.edu/~csgordon/papers/oopsla12.pdf
http://homes.cs.washington.edu/~csgordon/papers/oopsla12.pdf
ftp://ftp.research.microsoft.com/pub/tr/TR-2007-39.pdf
http://www.cs.princeton.edu/~appel/papers/concurrent.pdf
http://people.cs.kuleuven.be/~bart.jacobs/verifast/verifast.pdf
http://dx.doi.org/10.1145/1929553.1929559
http://dx.doi.org/10.1145/1929553.1929559
http://www.score.is.tsukuba.ac.jp/~minamide/papers/hole.popl98.pdf
http://www.score.is.tsukuba.ac.jp/~minamide/papers/hole.popl98.pdf
http://dx.doi.org/10.1145/1297027.1297061
http://dx.doi.org/10.1145/1297027.1297061

D-CONCRETE

A is a data constructor of d d not defined as mutable ~t is duplicable

A {~f : ~t} is duplicable

D-APP

data d (~a : ~κ) = ~A {~f : ~t} ~A {~f : [~u/~a]~t} is duplicable
d ~u is duplicable

D-ARROW
t→ u is duplicable

D-FORALL
t is duplicable

∀(a : κ) t is duplicable

D-EXISTS
t is duplicable

∃(a : κ) t is duplicable

D-SINGLETON
=x is duplicable

D-BAR
t is duplicable P is duplicable

(t | P) is duplicable

D-DYNAMIC
dynamic is duplicable

D-ANCHORED
t is duplicable

x@ t is duplicable

D-EMPTY

empty is duplicable

D-STAR
p is duplicable q is duplicable

p ∗ q is duplicable

Figure 16. Definition of the “duplicable” judgement

X-DEF
mutable data d (~a : ~κ) = . . .

d is exclusive

X-CONCRETE
A is a data constructor of d d is exclusive

A {~f : ~t} is exclusive

X-APP
d is exclusive

d ~t is exclusive

Figure 17. Definition of the “exclusive” judgement

A type system for borrowing permissions. In Principles of Program-
ming Languages (POPL), pages 557–570, 2012.

[25] Peter W. O’Hearn. Resources, concurrency and local reasoning.
Theoretical Computer Science, 375(1–3):271–307, 2007.

[26] François Pottier. Type soundness for Core Mezzo. Unpublished,
January 2013.

[27] François Pottier and Jonathan Protzenko. Mezzo. http://gallium.
inria.fr/~protzenk/mezzo-lang/, January 2013.

[28] John C. Reynolds. Separation logic: A logic for shared mutable data
structures. In Logic in Computer Science (LICS), pages 55–74, 2002.

[29] Frederick Smith, David Walker, and Greg Morrisett. Alias types.
In European Symposium on Programming (ESOP), volume 1782 of
Lecture Notes in Computer Science, pages 366–381. Springer, 2000.

[30] Nikhil Swamy, Juan Chen, Cédric Fournet, Pierre-Yves Strub, Karthik
Bhargavan, and Jean Yang. Secure distributed programming with
value-dependent types. In International Conference on Functional
Programming (ICFP), pages 266–278, 2011.

[31] Nikhil Swamy, Michael Hicks, Greg Morrisett, Dan Grossman, and
Trevor Jim. Safe manual memory management in Cyclone. Science
of Computer Programming, 62(2):122–144, 2006.

[32] Jesse A. Tov and Riccardo Pucella. Practical affine types. In Princi-
ples of Programming Languages (POPL), pages 447–458, 2011.

[33] Thomas Tuerk. Local reasoning about while-loops. Unpublished,
2010.

[34] David Walker and Greg Morrisett. Alias types for recursive data
structures. In Types in Compilation (TIC), volume 2071 of Lecture
Notes in Computer Science, pages 177–206. Springer, 2000.

17 2013/5/7

http://cs.cmu.edu/afs/cs.cmu.edu/Web/People/kbn/pubs/poplBorrowing.pdf
http://www.dcs.qmul.ac.uk/~ohearn/papers/concurrency.pdf
http://gallium.inria.fr/~fpottier/publis/fpottier-core-mezzo.pdf
http://gallium.inria.fr/~protzenk/mezzo-lang/
http://gallium.inria.fr/~protzenk/mezzo-lang/
ftp://ftp.cs.cmu.edu/user/jcr/seplogic.ps.gz
ftp://ftp.cs.cmu.edu/user/jcr/seplogic.ps.gz
http://www.cs.cornell.edu/talc/papers/alias.pdf
http://research.microsoft.com/pubs/150012/icfp-camera-ready.pdf
http://research.microsoft.com/pubs/150012/icfp-camera-ready.pdf
http://www.cs.umd.edu/~mwh/papers/cyc-mm-scp.pdf
http://www.eecs.harvard.edu/~tov/pubs/alms/
http://www.cl.cam.ac.uk/~tt291/talks/vstte10.pdf
http://www.cs.cornell.edu/talc/papers/alias-recursion.pdf
http://www.cs.cornell.edu/talc/papers/alias-recursion.pdf

	Introduction
	Mezzo by example
	Code
	Permissions
	To loop or to tail call?

	Syntax
	Types
	Expressions

	Ownership, modes, and extent
	Modes
	Extent

	Type-checking
	The typing judgment
	The permission subsumption judgment

	Surface syntax
	The name introduction form
	The consumes annotation
	Function definitions

	Adoption and abandon
	Overview
	Details
	Discussion

	Other means of permitting sharing
	Nesting
	Locks

	Related work
	Conclusion and future work
	Surface syntax
	Differentiating the two syntaxes
	Binding rules
	Environments
	Non-lexical scope

	Kinding rules
	Translating the surface syntax
	Removing name introductions
	Interpreting |consumes| annotations
	Translating expressions

	Modes and facts

