
Numbering Matters: First-Order Canonical Forms for Second-Order Recursive

Types

Nadji Gauthier

INRIA

Nadji.Gauthier@inria.fr

François Pottier

INRIA

Francois.Pottier@inria.fr

Abstract

We study a type system equipped with universal types and
equirecursive types, which we refer to as Fµ. We show that
type equality may be decided in time O(n log n), an improve-
ment over the previous known bound of O(n2). In fact, we
show that two more general problems, namely entailment
of type equations and type unification, may be decided in
time O(n log n), a new result. To achieve this bound, we
associate, with every Fµ type, a first-order canonical form,
which may be computed in time O(n log n). By exploiting
this notion, we reduce all three problems to equality and
unification of first-order recursive terms, for which efficient
algorithms are known.

1 Introduction

During the last decade, the programming language commu-
nity spent a great deal of effort studying object-oriented pro-
gramming languages and devising object encodings [3, 7, 15,
12, 16]. A typical object encoding is a type-preserving trans-
lation of a surface object-oriented language into a typed λ-
calculus. Such an encoding may serve two purposes. First, it
explains object-oriented programming in terms of standard
type-theoretic concepts. Second, it may be put to effective
use as the front-end of a type-preserving compiler, whose
back-end is then purely concerned with typed λ-calculus.
This requires, however, the target language of the encoding
to have decidable typechecking and, if possible, to admit an
efficient typechecking procedure.

Because object orientation is complex, the target lan-
guages of most object encodings are rich λ-calculi. They
typically incorporate some or all of the following features:
first-class universal and existential types ; recursive types ;
type operators; subtyping and bounded quantification. In
the present paper, we focus on the combination of the first
two: the object of our study is Fµ, an extension of Girard
and Reynolds’ system F with recursive types. The question
we are interested in is, does Fµ have decidable and efficient
typechecking?

Before addressing such a question, we must state it more
precisely, because Fµ comes in two flavors, whose typecheck-
ing problems are quite different: one extends F with isore-
cursive types, while the other extends it with equirecursive
types [1, 10].

In an extension of F with isorecursive types, two new
typing rules are added to the type system, which direct the
typechecker to fold or unfold a recursive type. (These rules

usually allow folding and unfolding only at the root of the
type. Allowing them to take place under a context requires
either adding coercions—special constructs that generate no
code—to the programming language, as proposed by Abadi
and Fiore [1], or defining more complex typing rules for
folding and unfolding, perhaps along the lines suggested by
Collins and Shao [5].) The definition of type equality is the
same as in F : that is, no new axioms are added to deal with
recursive types. Thus, typechecking isorecursive Fµ is no
more difficult than typechecking F .

In an extension of F with equirecursive types, on the
other hand, there are no new typing rules. Instead, type
equality is extended so that comparing two types amounts
to comparing their infinite unfoldings. Thus, typing deriva-
tions are less verbose. Folding and unfolding naturally take
place not only at the root of a type, but also under a con-
text. However, it is now more difficult to determine whether
two types are equal.

Thus, a more precise statement of the question is: does
equirecursive Fµ have decidable and efficient typechecking?
Perhaps surprisingly, the problem has received little atten-
tion in the literature. As suggested above, the key issue is
to decide whether two types are equal. It appears to have
been only recently studied. Colazzo and Ghelli [4] show that
the more general problem of deciding subtyping in Kernel
Fun is decidable. Glew [13] studies type equality in Fµ and
proves that its complexity is bounded by O(n2), where n
is the size of the types at hand. In the present paper, we
improve upon Glew’s result by giving a decision algorithm
whose complexity is O(n log n).

We are in fact able to settle a more general question: does
an extension of equirecursive Fµ with guarded algebraic data
types, in the style of Xi et al. [22], have decidable typecheck-
ing? Such a type system is not of purely theoretical interest:
for instance, it could be a component of a type-preserving
compiler whose front-end implements a typical object encod-
ing, requiring universal types and recursive types, and whose
back-end performs defunctionalization in the style of [18], re-
quiring guarded algebraic data types. The key issue is then
to decide whether two Fµ types are equal under a number of
equality hypotheses, that is, to decide whether a conjunction
of type equations entails another type equation. To the best
of our knowledge, this issue has never been studied before.
In the present paper, we show that it can be decided in time
O(n log n), where n is the size of the input problem.

Our solution to the entailment problem is via a reduction
to the unification problem. That is, we are able to determine
whether two Fµ types are unifiable in time O(n log n). This

τ := α (variable)
| a (atom)
| µα.T ~τ (type constructor application)
| µα.∀a.τ (universal type)

Figure 1: Types in Fµ

α =µa α a =µa a

{α 7→ µα.T ~τ}~τ =µa {α′ 7→ µα′.T ~τ′}~τ′

µα.T ~τ =µa µα′.T ~τ′

{α 7→ µα.∀a.τ}τ =µa {α′ 7→ µα′.∀a.τ ′}τ ′

µα.∀a.τ =µa µα′.∀a.τ ′

Figure 2: Type equality in Fµ

result could have implications in the area of (partial) type
inference for Fµ. It may also be used to implement hash-
consing of second-order recursive types, a technique that so
far has been studied for first-order recursive types only [6].

In fact, our algorithm for unifying Fµ types has already
found an initially unexpected application. We discovered,
during a conversation with Jacques Garrigue, that OCaml’s
type inferencer requires such an algorithm, because object
types may be recursive and may contain polymorphic meth-
ods. Upon close examination, the unification algorithm that
has been employed by the OCaml compiler for several years
was found to be unsound. It should soon be replaced with a
version of the one described in this paper [Garrigue, personal
communication].

2 Types and type equality in Fµ

In this section, we define the problem and highlight some of
its subtleties. We explain how the decision problems for type
equality in F and Fµ have been dealt with in the literature,
and give an outline of our solution.

2.1 Definition

The syntax of types in our version of Fµ appears in Figure 1.
For the sake of clarity, we distinguish variables α, β, γ, . . .,
which are bound by µ, and atoms a, b, c, d, . . ., which are
bound by ∀. Variables and atoms are drawn from two dis-
joint, denumerable sets. The free variables fv(τ) and the free
atoms fa(τ) of a type τ are defined in the usual way. We
identify types modulo α-equivalence of variables and atoms.
A type is atom-closed if and only if it has no free atoms.

We let T range over an arbitrary set of type constructors,
each of which is equipped with a nonnegative integer arity.
In the notation T ~τ , the length of the vector of types ~τ is
implicitly assumed to match the arity of T . In several exam-
ples, we employ the type constructor →, of arity 2, whose
applications are written infix.

Following common practice, we combine the µ quantifier
(which forms recursive types) with type constructor appli-
cations and with the ∀ quantifier. By not making τ := µα.τ

a production of the grammar, we disallow meaningless types
such as µα.α. For the sake of readability, we write T ~τ
for µα.T ~τ when α does not appear free in ~τ , and ∀a.τ for
µα.∀a.τ when α does not appear free in τ.

In standard presentations of Fµ, the distinction between
variables and atoms is not made. As a result, a standard
Fµ type must undergo a simple translation step in order
to fit our formalism. The translation is straightforward:
universally bound type variables become atoms, while µ-
bound and free type variables remain variables. For in-
stance, the standard Fµ type µα.β → ∀β.α → β → γ is
written µα.β → ∀b.α → b → γ in this paper.

It is important to remark that the image of a standard Fµ

type under this translation is atom-closed by construction.
For this reason, the input of the decision problems studied in
this paper, such as equality and unifiability, is restricted to
consist of atom-closed types. Also, two types are considered
unifiable if and only if they admit an atom-closed unifier.
Note, however, that the subterms of an atom-closed type
are not in general atom-closed.

It is also worth noting that, under this translation, the
images of the standard types τ and ∀α.τ may differ at arbi-
trarily deep locations. For instance, the image of α → α is
α → α, while the image of ∀α.α → α is ∀a.a → a. Thus, in
standard F or Fµ, constructing ∀α.τ given τ requires con-
stant time, whereas, in our formalism, constructing a repre-
sentation of ∀α.τ given a representation of τ is not a constant
time operation.

A substitution is a total mapping of variables to types.
The domain of θ is the set of variables α where α and θ(α)
differ. We write {α 7→ τ} for the substitution that maps α
to τ and is the identity elsewhere. A substitution may be
viewed as a total mapping of types to types, in the usual,
capture-avoiding, manner.

Types are finite terms with binders. As a result, math-
ematical equality of types, which we write =, incorporates
α-equivalence of variables and atoms, but does not treat µ
binders in a special way. In order to obtain an equirecursive
flavor of Fµ, one must define a more permissive notion of
type equality, incorporating folding and unfolding of recur-
sive types. This new equivalence relation, which we write
=µa, is coinductively defined by the rules in Figure 2.

The definition of =µa is entirely standard. (For back-
ground reading on recursive types and coinduction, we refer
the reader to [1, 2, 10].) Relations are extended to vectors
in a pointwise manner, so that ~τ =µa ~τ′ means that, for ev-
ery index i, the i-th components of the vectors ~τ and ~τ′ are
in the relation =µa. The effect of the last rule is to unfold
the outermost µ binders, exposing a pair of universal types,
whose bodies are then compared. For the sake of simplic-
ity, the rule requires the universal quantifiers on either side
of the equality to share a common naming convention, that
is, to bind the same atom a. Because types are identified
modulo α-equivalence of atoms, this does not incur any loss
of generality: it is possible to formulate an equivalent rule,
where this requirement is removed, and where the premise
incorporates an explicit renaming of atoms.

It is straightforward to establish the following facts: sub-
stitution preserves equality; equality preserves free atoms;
substitution preserves or increases free atoms.

Lemma 2.1 τ =µa τ′ implies θτ =µa θτ′. ⋄

Lemma 2.2 τ =µa τ′ implies fa(τ) = fa(τ′). ⋄

Lemma 2.3 fa(τ) ⊆ fa(θτ). ⋄

2

∀a

→

α ∀b

→

a

6=µa

∀a

→

α ∀b

→

a ∀a

→

α

Figure 3: Subtleties of type equality

2.2 Some subtleties of type equality

Although the definition of =µa is simple, one must proceed
with caution: it is easy to form misleading intuitions about
it. Part of its subtlety is illustrated in Figure 3, which con-
tains graphical representations of the types τ1 = µβ.∀a.α →
∀b.a → β and τ2 = ∀a.α → µβ.∀b.a → ∀a.α → β. (This
example is adapted from [13].) These types are not in the
relation =µa, even though one might believe, at first sight,
that their infinite unfoldings coincide.

Let us have a closer look. An unfolding of τ2 is

∀a.α → ∀b.a → ∀c.α → µβ.∀b.a → ∀a.α → β.

Starting from the left, examine the third universal quanti-
fier: is this what you expected? Here is what happened.
Because the atom a appears free in the term µβ.∀b.a →
∀a.α → β, and because β appears inside the scope of a ∀a
quantifier in the term ∀b.a → ∀a.α → β, computing a cor-
rect unfolding requires an α-conversion step, so as to avoid
capture. Here, the innermost ∀a quantifier in τ2 was changed
into ∀c, which explains the result.

Computing an unfolding of τ1 is more straightforward.
Indeed, since τ1 is atom-closed, there is no danger of capture.
We find

∀a.α → ∀b.a → µβ.∀a.α → ∀b.a → β,

which, by α-equivalence, may be written

∀a.α → ∀b.a → µβ.∀c.α → ∀b.c → β.

Let us now place the unfoldings of τ1 and τ2 next to each
other:

∀a.α → ∀b.a → µβ.∀c.α → ∀b.c → β
∀a.α → ∀b.a → ∀c.α → µβ.∀b.a → ∀a.α → β

It is now clear that these types are not in the relation =µa.
Indeed, starting from the left and until the fourth universal
quantifier, these types offer a common structure. However,
at that point, the former exhibits an occurrence of the atom
c, whereas the latter exhibits an occurrence of a.

In short, the (incorrect) intuition that τ1 and τ2 are re-
lated by =µa stems from the mental use of a capturing sub-
stitution. By näıvely unrolling the loop in τ2, we bring an
occurrence of the atom a into the scope of the innermost

∀a quantifier, within which it initially did not lie: indeed,
the scope of a ∀ quantifier does not extend through a reverse
edge. This fact is obvious when examining syntactic repre-
sentations of types—for instance, in µβ.a → ∀a.β, the scope
of ∀a is β alone, and does not include the occurrence of a to
its left, which is free—but is perhaps less so when thinking
in terms of graphs.

2.3 Deciding type equality: the state of the art

The above example illustrates some of the difficulties that
arise when comparing two types for equality. First, one must
really compare the infinite unfoldings of the types at hand.
Second, renamings of atoms are involved, for two reasons:
(i) unfolding recursive types involves capture-avoiding sub-
stitutions, and (ii) comparing two universal types requires
ensuring that the bound atoms match.

The decision problem for type equality has been investi-
gated by Glew [13]. He encodes types as ad hoc automata,
which may also be viewed as graphs somewhat analogous to
those found in Figure 3, and gives an algorithm that decides
type equality. Roughly speaking, Glew’s algorithm checks
for the existence of a bisimulation relating two automata.
In terms of graphs, this process could be described as fol-
lows. The two graphs are traversed synchronously. When
reaching two nodes labeled with universal quantifiers, say
∀a and ∀b, one keeps track of the correspondence between
the atoms a and b, so that, when later reaching two leaf
nodes labeled with the atoms a and b, they are (correctly)
viewed as related. Glew uses partial bijections to keep track
of this correspondence. Because both the number of partial
bijections that may be constructed and the number of pairs
of nodes that may be visited are finite, the algorithm termi-
nates. However, the number of partial bijections is in fact
exponential in n, where n is the size of the input problem.
Fortunately, thanks to a more clever abrupt termination cri-
terion, Glew is able to achieve time complexity O(n2).

It is worth recalling that, in system F (that is, in the
absence of recursive types), types can be compared in time
O(n), provided they are represented using a De Bruijn en-
coding. The cost of converting a nameful representation into
a De Bruijn encoding is O(n log n), assuming some flavor of
balanced trees is used to map atoms to integer indices. (The
expected cost can be brought down to O(n) by using hash
tables instead of balanced trees.) This approach is used in
many typecheckers for F ; see, for instance, [17, Chapter 25].
In the presence of equirecursive types, however, De Bruijn
indices become more difficult to manipulate. For instance,
successive unfoldings of a type may cause an ever-growing
sequence of indices to appear, leading to an infinite, irreg-
ular first-order term: see [13, Section 3.1]. To the best of
our knowledge, the practical use of a De Bruijn encoding in
such a setting has never been investigated. Glew does con-
sider infinite trees that contain De Bruijn indices, but only
as a mathematical model, as opposed to an implementation
scheme.

To sum up, the current state of the art is as fol-
lows: although type equality has worst-case time complexity
O(n log n) in F , the best known algorithm for Fµ runs in
time O(n2). Why such a gap? Should equirecursive types
really be so expensive? In the following, we answer in the
negative.

3

2.4 Our approach

The strength of the classic De Bruijn encoding lies in the fact
that it provides first-order canonical forms of types: two F
types are equal, up to α-equivalence of atoms, if and only if
their De Bruijn encodings, which are first-order terms, are
syntactically equal.

We propose to proceed in a similar manner: to every Fµ

type, we associate a first-order recursive term, where atoms
are replaced with suitable natural integers. The structure
of the input type, including its µ binders, is preserved, so
that the encoding’s output may in fact be viewed as an infi-
nite, but regular, first-order tree. The key trick is to choose
the numbering of atoms in such a way that the encoding is
canonical : we prove that two Fµ types are related by =µa

if and only if their encodings, viewed as regular first-order
trees, are equal. The manner in which we number atoms ap-
pears to be original, and is unrelated to De Bruijn’s scheme.

We prove that, by using appropriate data structures,
the time complexity of computing a type’s encoding is
O(n log n). Furthermore, a standard first-order unification
algorithm such as Huet’s [14] allows testing two recursive
first-order terms for equality in time O(nα(n)). There fol-
lows that type equality in Fµ has time complexity O(n log n).

The problem of determining whether two Fµ types are
unifiable is addressed in the same manner: it is reduced, via
the encoding, to unification of first-order recursive terms.

2.5 Related work

Colazzo and Ghelli [4] study the decision problem for the
subtyping relationship in an extension of Kernel Fun with
equirecursive types, and find it to be decidable. This implies
that type equality in Fµ is decidable as well. The time
complexity of their algorithm appears to be unknown.

Glew’s work [13] was mentioned above. He studies type
equality in Fµ and gives an algorithm whose time complexity
is quadratic.

The problem of determining whether two Fµ types are
unifiable may be turned, in a very simple manner, into a
nominal unification problem [21], provided nominal unifica-
tion is extended with support for recursive terms, which ap-
pears straightforward. However, neither we nor Urban [per-
sonal communication] are currently able to formulate a nom-
inal unification algorithm whose time complexity is less than
O(n2).

We solve the unification problem for Fµ types, which
we refer to as second-order recursive types and which Glew
refers to as second-order trees. Yet, the present paper has
nothing to do with second-order unification [8]. Here, we
are interested in unification modulo =µa, that is, modulo α-
equivalence of atoms and folding and unfolding of recursive
types. Second-order (or higher-order) unification consists in
unifying simply-typed λ-terms modulo βη-equivalence, and
is undecidable.

3 A first-order encoding of Fµ types

In this section, we encode second-order recursive types (types
for short) into a particular class of first-order recursive terms
(terms for short).

σ := α (variable)
| a (atom)
| µα.(a) T ~σ (term constructor application)
| µα.(a)888σ (idem)

Figure 4: First-order recursive terms

α =µ α a =µ a

{α 7→ µα.(a) T ~σ}~σ =µ {α′ 7→ µα′.(a)T ~σ′}~σ′

µα.(a)T ~σ =µ µα′.(a) T ~σ′

{α 7→ µα.(a)888σ}σ =µ {α′ 7→ µα′.(a)888σ′}σ′

µα.(a)888σ =µ µα′.(a)888σ′

Figure 5: Equality of first-order recursive terms

3.1 First-order recursive terms

We first define the target space of the encoding, that is, the
syntax of the first-order terms σ that we use to encode types.
It appears in Figure 4. As before, terms include variables
and atoms, and variables may be µ-bound at a constructor
application node. The essential difference with respect to
the syntax of types, which was given in Figure 1, lies in the
treatment of atoms. Here, applications of the constructors
T and 888 are annotated with an atom (a), but do not bind
it: that is, a occurs free in both µα.(a) T ~σ and µα.(a)888σ.
As a result, atoms are never bound: all of the atoms that
occur in a first-order term σ occur free in σ. The constructor
8

8

8 no longer plays a special role: it is simply a unary term
constructor.

We equip terms with a notion of equality, written =µ,
whose coinductive definition appears in Figure 5. It is the
standard notion of equality for first-order recursive terms: it
only accounts for α-equivalence of variables and for folding
and unfolding of µ binders. In other words, two terms are
related by =µ if and only if their infinite unfoldings, which
are regular trees, coincide. In the third and fourth rules
in Figure 5, the same atom (a) must appear on either side
of the equality: since atoms are never bound, no implicit
α-conversion step is allowed.

To complete the definition of terms, we must be more
specific about the nature of atoms. Here is why. In the type
∀a.a, the atom a is bound: this type may also be written
∀b.b. However, at the level of terms, atoms are free, so they
are observable: if a and b are distinct atoms, then the terms
(a)888 a and (b)888b are distinct. As a result, our encoding,
whose purpose is to produce canonical forms, must be able
to perform a deterministic choice between the two. If atoms
were interchangeable for all purposes, as is usually the case,
such a choice would be impossible [9, Remark 4.6]. Thus,
we must impose some more structure on the set of atoms.

It is convenient to identify atoms with natural integers,
so that atoms are totally ordered and have a successor func-
tion. From here on, we adopt this convention. At the level
of types, this decision has no impact: because types are
identified modulo α-equivalence of atoms, and because, at
the end of the day, we are only interested in atom-closed

4

N(θ, α) = α

N(θ, a) = a

N(θ, µα.T ~τ) = µα.(a) T N(θ ◦ {α 7→ a}, ~τ)
if a = max fa(θ(µα.T ~τ))

N(θ, µα.∀(a + 1).τ) = µα.(a)888N(θ ◦ {α 7→ a}, τ)
if a = max fa(θ(µα.∀(a + 1).τ))

N(τ) = N(id , τ)

Figure 6: The encoding

types, atoms are still used as interchangeable names. At
the level of terms, atoms are never bound, so their identity
is observable, and they really are numbers. In other words,
the purpose of our encoding is to map names to numbers.

3.2 The encoding

We are now ready to present the encoding. Let us recall
that it is a function N of types to terms, and that we intend
it to define canonical forms, that is, we intend τ =µa τ′ to
be equivalent to N(τ) =µ N(τ′).

The definition of the encoding appears in Figure 6. We
first define a function N of two parameters, namely, a substi-
tution θ and a type τ. The substitution θ is used to associate
information with µ-bound variables. It is initially empty: we
define N(τ) as a shorthand for N(id , τ), where id is the iden-
tity substitution. When τ is nonrecursive, the parameter θ
is irrelevant and may be ignored. We recommend doing so
upon first reading of the equations in Figure 6.

To begin, note that the encoding is structure-preserving :
every variable is mapped to itself, every atom is mapped to
an atom, and every constructor application is mapped to an
application of the same constructor. In other words, the sole
effect of the encoding is to fix the numbering of atoms.

One might wonder how it is possible for the encoding to
impose a numbering of atoms, since the second equation in
Figure 6 seems to state that every atom is mapped to itself.
The truth is, it only states that an atom is mapped to itself
if it appears at the root of the type. More generally, it is
possible to check that every atom that occurs free in the
original type is mapped to itself by the encoding. Such a
fact is, however, of little value, because, in the end, we are
interested in atom-closed types, which have no free atoms.
So, the key question is, how does the encoding deal with
bound atoms?

To answer this question, let us examine the encoding of
universal types, which bind atoms. Because the encoding
must be canonical, =µa-equivalent types must be mapped
to =µ-equivalent terms. For instance, the types τ1 =
µα.∀a.a → c → α and τ2 = ∀b.b → c → µα.∀a.a → c → α,
which are =µa-equivalent, must receive =µ-equivalent en-
codings. This requires agreeing on a common name d for
the atom that is bound at their root. By α-conversion, τ1

and τ2 may be written µα.∀d.d → c → α and ∀d.d → c →
µα.∀a.a → c → α, respectively, where d is any atom other
than c, since c occurs free in τ1 and τ2 and must not be
captured. In order to choose d in a deterministic manner,
we let d be the successor of c. Because atoms are natural
integers, this definition makes sense.

In the general case, when encoding a universal type ∀a′.τ,

∀a

→

∀c ∀b

→

b

→

a c

(0)∀∀∀

(1)→

(1)∀∀∀ (0)∀∀∀

(1)→

1

(2)→

1 2

Figure 7: A type and its encoding

we require the bound atom a′ to be the successor of the
greatest atom that occurs free in ∀a′.τ. In other words, we
require a′ to be a+1, where a is max fa(∀a′.τ). (By conven-
tion, max? is 0.) If a′ does not meet this requirement, then
an α-conversion step must be performed. Because, by con-
struction, a+1 does not occur free in ∀a′.τ, such a step must
be possible, which means that, in spite of this requirement,
the encoding remains a total function. Also, it is impor-
tant to keep in mind that, if two types τ and τ′ are related
by =µa, then their sets of free atoms must coincide, so the
atoms max fa(τ) and max fa(τ′) must coincide as well. This
is key to proving that the encoding maps =µa-equivalent
types to =µ-equivalent terms.

To sum up the idea exposed in the previous paragraph,
here is a simplified version of the fourth equation in Figure 6,
which makes sense when types are nonrecursive. Then, µ
binders disappear, and the substitution θ is suppressed:

N(∀(a + 1).τ) = (a)888N(τ)
if a = max fa(∀(a + 1).τ)

The effect of the side condition is to determine the value of
a. For readers who find its apparently circular formulation
mysterious, here is an equivalent version where the required
α-conversion step is made explicit:

N(∀b.τ) = (a)888N({b 7→ a + 1}τ)
if a = max fa(∀b.τ)

In short, to encode ∀b.τ, one computes the greatest atom
a that occurs free in ∀b.τ, renames b to a + 1 in τ, and
proceeds with the encoding of (the renamed version of) τ.

To complete our explanation of the fourth equation in
Figure 6, we must describe the machinery that deals with
recursive types. As pointed out earlier, the encoding is
structure-preserving: every µ binder and every variable is
kept unchanged. There is only one subtlety: when com-
puting the set of free atoms at a certain node in the in-
put type, one must account for the free atoms contributed
by the reverse edges that point back above that node.
Consider, for instance, the type ∀a.τ, where τ stands for
µα.a → ∀b.b → α. (A graphic representation appears in
Figure 8.) Strictly speaking, we have fa(∀b.b → α) = ?,
so b can safely be renamed to any atom, including a. How-
ever, an unfolding of τ is a → ∀b.b → τ, where b cannot
be renamed to a, because fa(∀b.b → τ) is {a}. We claim
that it is necessary to rename b in a manner that is correct
not only with respect to τ, but also with respect to all of
its unfoldings. (We come back to this point in §5.) For this
reason, when computing the free atoms of ∀b.b → α, one
should not view α as a leaf that has no free atoms. Instead,

5

∀a

→

a ∀b

→

b

(0)∀∀∀

(1)→

1 (1)∀∀∀

(2)→

2

Figure 8: A type and its encoding

one should follow the reverse edge from α to τ, and, since
fa(τ) is {a}, consider that α contributes the free atom a. By
proceeding in such a manner, one is lead to renaming b to
the successor of a, a choice that is safe with respect to all
unfoldings of τ.

Technically, this idea is implemented as follows. When
examining the node τ = µα. . . ., we evaluate max fa(τ),
yielding a. Then, we create the substitution θ = {α 7→ a},
so as to record the fact that every occurrence of α stands
for a type whose greatest free atom is a. (One could equiva-
lently define θ as {α 7→ τ}; see Lemma 4.1.) Upon reaching
the node ∀b. . . ., we compute max fa(θ(∀b.b → α)), which
due to the presence of θ is a, and conclude that b should be
renamed to the successor of a. This explains the role of θ in
the definition of N .

The third equation in Figure 6 is analogous to the fourth
one. Because nodes of the form µα.T ~τ do not bind atoms,
no α-conversion takes place. We simply update θ as above.

Example Figure 7 depicts the type τ = µα.∀a.(∀c.a →
c) → ∀b.b → α and its image through N . Here is how the
latter is computed. Because τ has no free atoms, its root
node is annotated with (0), and the atom a is renamed to 1.
(In particular, observe that the right-hand term’s leftmost
leaf is 1.) Then, one moves down to the next node, an
arrow constructor. Its only free atom is a, that is, 1, so it
is annotated with (1), and one moves down to its children,
which are respectively labelled ∀c and ∀b. As for the former,
the greatest free atom of ∀c.a → c is a, that is, 1, so the 888
node is annotated with (1), and c is renamed to 2. As for the
latter, there are no free atoms below this node (the reverse
edge does not contribute any, because τ is atom-closed), so
it is labeled with (0), and b is renamed to 1. ⋄

Example Figure 8 depicts the type τ = ∀a.µα.a → ∀b.b →
α and its image through N . Here is how the latter is com-
puted. As in the previous example, τ is atom-closed, so its
root node is labeled (0), the atom a is renamed to 1, and
the topmost arrow node is labeled (1). Let us now consider
the arrow’s right child, a ∀ node. Its greatest free atom is a,
which is contributed by the reverse edge. As a result, the 888
node is annotated with (1), and b is renamed to 2. ⋄

4 Correctness of the encoding w.r.t. equality

When computing the greatest free atom of some type, re-
placing a subtree with its own greatest free atom does not
affect the end result.

Lemma 4.1 If a is max fa(θτ′), then max fa(θ{α 7→ τ′}τ)
and max fa(θ{α 7→ a}τ) coincide. ⋄

The encoding commutes with substitutions of types for
type variables. This is a key property.

Lemma 4.2 If a is max fa(θτ ′), then N(θ, {α 7→ τ ′}τ) is
{α 7→ N(θ, τ ′)}(N(θ ◦ {α 7→ a}, τ)). ⋄

Proof. Assume a = max fa(θτ ′) (1). The proof is by struc-
tural induction on τ. The result is immediate when τ is a
variable or an atom. We omit the case where τ is the appli-
cation of a type constructor T , because it is subsumed by
the last case, where τ is a universal type. Thus, we focus on
the last case. We may assume α ∈ fv(τ) (2), since the result
is otherwise immediate.

Let b stand for max fa(θ{α 7→ τ′}τ). By Lemma 2.3,
we have b ≥ max fa({α 7→ τ′}τ) (3). By Lemma 2.3 again,
(3) implies b ≥ max fa(τ), whence b + 1 6∈ fa(τ) (4). Fur-
thermore, we let the reader check that (3) and (2) imply
b ≥ max fa(τ′), whence b + 1 6∈ fa(τ′) (5). Last, by
Lemma 4.1 and by (1), we have b = max fa(θ{α 7→ a}τ) (6).

Because τ is a universal type, and by (4), we may write
τ under the form µβ.∀(b + 1).τ1 (7), where β 6= α (8) and
β 6∈ fv(τ′) (9) hold. Then, thanks to (9), (8), and (5),
{α 7→ τ′}τ is µβ.∀(b + 1).{α 7→ τ′}τ1 (10).

Let θ′ stand for θ ◦ {β 7→ b}. By (9), we have θτ′ =
θ′τ′, which together with (1) implies a = max fa(θ′τ ′) (11).
Also by (9), we have N(θ′, τ′) = N(θ, τ′) (12), and β 6∈
fv(N(θ, τ′)) (13).

We may now proceed as follows:

N(θ, {α 7→ τ′}τ)
= N(θ, µβ.∀(b + 1).{α 7→ τ′}τ1)

by (10)
= µβ.(b)888N(θ′, {α 7→ τ′}τ1)

by definition of b and θ′

= µβ.(b)888 {α 7→ N(θ′, τ′)}(N(θ′ ◦ {α 7→ a}, τ1))
by (11) and by the induction hypothesis

= {α 7→ N(θ, τ′)}(µβ.(b)888N(θ′ ◦ {α 7→ a}, τ1))
by (12), (8), and (13)

= {α 7→ N(θ, τ′)}(N(θ ◦ {α 7→ a}, τ))
by (7), (6), (8), and by definition of θ′

�

We now reach the main theorem:

Theorem 4.3 Let θ be arbitrary. Then, τ =µa τ ′ is equiv-
alent to N(θ, τ) =µ N(θ, τ ′). ⋄

Proof. We first prove the left to right implication. The proof
of the right to left implication, which is analogous, is omitted
so as to conserve space.

Throughout, θ is arbitrary and fixed. Let R be the re-
lation between terms defined by N(θ, τ) R N(θ, τ ′) if and
only if τ =µa τ′. Our goal is to prove that R is a subset of
=µ. By the coinduction principle, it suffices to prove that R
is consistent [10] with respect to the rules in Figure 5, that
is, to establish R ⊆ EµR, where Eµ is the monotone func-
tion from relations to relations implicitly associated with
the rules in Figure 5. Thus, let τ =µa τ′ (1). Our goal is to
prove that the pair (N(θ, τ), N(θ, τ ′)) may be deduced, via
one of the rules in Figure 5, from pairs that are members of
R.

We reason by cases on the structure of τ and τ′. The
cases where τ and τ′ are variables or atoms are immediate.
The case where they are applications of a type constructor
T is subsumed by the last case, where they are universal
types. Thus, we focus on the last case.

6

Let a stand for max fa(θτ) (2). By Lemma 2.3, we have
a ≥ max fa(τ), whence a + 1 6∈ fa(τ) (3). By (1) and by
Lemmas 2.1 and 2.2, we also have a = max fa(θτ′) (4) and
a + 1 6∈ fa(τ′) (5).

By (3) and (5), we may write τ and τ′ under the form
µα.∀(a + 1).τ1 and µα.∀(a + 1).τ′

1, respectively. By defini-
tion of =µa, we then have {α 7→ τ}τ1 =µa {α 7→ τ ′}τ′1 (6).
By definition of N and by (2), N(θ, τ) is µα.(a)888N(θ◦{α 7→
a}, τ1). Similarly, N(θ, τ ′) is µα.(a)888N(θ ◦ {α 7→ a}, τ′

1).
Thus, by applying the last rule in Figure 5, the goal becomes
to prove that the terms {α 7→ N(θ, τ)}(N(θ ◦ {α 7→ a}, τ1))
and {α 7→ N(θ, τ ′)}(N(θ ◦ {α 7→ a}, τ′

1)) are related by
R. By (2), (4), and Lemma 4.2, these terms are precisely
N(θ, {α 7→ τ}τ1) and N(θ, {α 7→ τ′}τ′

1). By (6) and by
definition of R, they are related by R. �

As an immediate corollary, we obtain:

Theorem 4.4 τ =µa τ ′ is equivalent to N(τ) =µ N(τ ′). ⋄

Theorem 4.4 yields a new decision procedure for type
equality in Fµ. Indeed, whether two first-order recursive
terms are related by =µ may be decided in time O(nα(n)),
using a standard first-order unification algorithm, such as
Huet’s [14]. Thus, in order to obtain an efficient decision
procedure for =µa, there only remains to find an efficient
method for computing N . This is the topic of §7.

5 Correctness of the encoding w.r.t. unifiability

We have shown that the encoding allows reducing the equal-
ity problem from the second order to the first order. We
would now like to generalize this result to the problem of
unification.

We begin with a few definitions. A (type) substitution θ
is atom-closed if and only if every type in its image is atom-
closed. An atom-closed substitution θ unifies τ and τ′ if and
only if θτ =µa θτ′ holds. τ and τ′ are unifiable if and only
if some atom-closed substitution θ unifies them. A (term)
substitution ϕ unifies σ and σ′ if and only if ϕσ =µ ϕσ′

holds. σ and σ′ are unifiable if and only if some substitution
ϕ unifies them.

A key property, which follows directly from Lemma 4.2,
is the following: if τ ′ is atom-closed, then N({α 7→ τ ′}τ) is
{α 7→ N(τ ′)}N(τ). More generally, the encoding commutes
with atom-closed substitutions, as stated by the following
lemma. We write N(θ) for the image of θ through the en-
coding, defined as the substitution that maps every variable
α to the term N(θα), and lifted to a function of terms to
terms in the standard way. (It must not be confused with
N ◦ θ, a function from types to terms.)

Lemma 5.1 If θ and τ are atom-closed, then N(θ)(N(τ))
is N(θτ). ⋄

This lemma is the main reason why it is meaningful to
attempt to unify encodings of types. It immediately allows
proving the first result of this section:

Theorem 5.2 Let τ and τ ′ be atom-closed. If θ unifies τ
and τ′, then N(θ) unifies N(τ) and N(τ ′). ⋄

Proof. Let τ and τ ′ be atom-closed. Assume θ unifies τ
and τ′. By definition, θ is assumed to be atom-closed, and
θτ =µa θτ′ holds. Then, we have

N(θ)(N(τ)) = N(θτ) by Lemma 5.1
=µ N(θτ ′) by Theorem 4.3
= N(θ)(N(τ ′)) by Lemma 5.1

�

Q(α) = α
Q(a) = a
Q(µα.(a)T ~σ) = µα.T Q(~σ)
Q(µα.(a)888σ) = µα.∀(a + 1).Q(σ)

Figure 9: The decoding

In words, if two types are unifiable, then so are their
encodings. Now, we would like to prove a converse of this
theorem, that is, to deduce second-order unifiability from
first-order unifiability. Let’s look at a few examples, to help
develop an intuition. Suppose we wish to know if ∀a.a → β
and ∀a.a → ∀b.b are unifiable. Encoding these types yields
a first-order unification problem:

(0)888 (1
(1)
→ β) =? (0)888 (1

(1)
→ (0)888 1),

whose most general unifier is {β 7→ (0)888 1}. Applying a
decoding to this term substitution, we obtain the type sub-
stitution {β 7→ ∀b.b}, wich unifies the initial problem, and
is indeed its most general unifier.

The decoding Q, which we have alluded to above, is de-
fined in Figure 9. Its definition is extremely simple. Atoms
and variables are preserved. At constructor application
nodes, the annotation (a) is erased. At 888 nodes, a uni-
versal quantifier is re-introduced, with the convention that
the bound atom is a + 1. The next lemma states that the
decoding Q is indeed the inverse of the encoding.

Lemma 5.3 Q(N(τ)) is τ. ⋄

If ϕ is a term substitution, we define its image through
the decoding Q(ϕ) as the type substitution that maps a
variable α to Q(ϕα). It is lifted to a function of types to
types in the standard way. (Again, it must not be confused
with Q ◦ ϕ, a function from terms to types.)

The last example was extremely simple. Unfortunately,
things do not always work out so easily: two non-unifiable
types may have unifiable encodings. Consider, for example,
the unsatisfiable problem ∀a.a → β =? ∀a.a → a. Its image
through the encoding is

(0)888 (1
(1)
→ β) =? (0)888 (1

(1)
→ 1),

whose most general unifier is {β 7→ 1}. Applying Q to this
term substitution, we obtain {β 7→ 1}, a type substitution
that is not atom-closed, and that does not solve the original
unification problem.

This example suggests that a first-order unifier is no good
unless its image through Q is atom-closed. Let us call atom-
friendly a term, or term substitution, whose image through
Q is atom-closed. We will eventually prove that the exis-
tence of an atom-friendly first-order unifier does imply that
of a second-order unifier.

However, this intuitive result hides a technical difficulty:
the decoding Q does not preserve equality, that is, σ =µ σ′

does not imply Q(σ) =µa Q(σ′). Consider, for example, the
terms and types in Figure 10. The term σ at upper left is
such that the decoding of an unfolding of σ (lower right) is
not =µa-equivalent to the decoding of σ (upper right). The
problem is that a valid first-order unfolding step may, due
to capture, correspond to an invalid second-order unfolding

7

(0)∀∀∀

(1)→

1 (0)∀∀∀

(1)→

1

Q
7−→

∀a

→

a ∀a

→

a

=µ

(0)∀∀∀

(1)→

1 (0)∀∀∀

(1)→

1 (1)→

1 (0)∀∀∀

(1)→

1

Q
7−→

6=µa

∀a

→

a ∀a

→

a →

a ∀a

→

a

Figure 10: Term unfolding versus type unfolding

step. In other words, the image through Q of a first-order
unifier is not necessarily a second-order unifier!

It is worth noting that, for terms that lie in the image
of N , the decoding does preserve equality. This is a conse-
quence of Theorem 4.4 and Lemma 5.3. Thus, the term σ at
upper left in Figure 10 is not in the image of N . Indeed, it is
not the encoding of the type τ that appears left in Figure 8,
even though τ is Qσ. The presence of the reverse edge is the
reason why b was numbered 2, instead of 1, in Figure 8, and
it is also the cause of the problem in Figure 10. This is not
fortuitous: the encoding was designed to avoid producing
problematic terms such as σ.

In the following, we identify a subset of the terms where
Q does preserve equality. We refer to these terms as cycle-
friendly. Furthermore, we prove that every term is related
by =µ to some cycle-friendly term. This allows us to argue
that, if a first-order unification problem admits a unifier,
then it admits a cycle-friendly unifier, which does give rise,
through Q, to a second-order unifier.

We now give the formal definitions and lemmas required
to carry out the development outlined in the previous para-
graphs. The end of this section is quite technical. Upon
first reading, the reader might wish to skim through it and
devote particular attention only to Theorems 5.18 and 5.19.

The top atom ta(σ) of a term σ is defined as follows: the
top atom of a variable α is 0; the top atom of the terms a,
µα.(a) T ~σ, and µα.(a)888σ is a.

We continue with a notion of well-formedness for first-
order terms, whose definition appears in Figure 11. (The
substitution ϕ is omitted in a judgement when it is the iden-
tity.) The interest of this notion lies in the following lemma:

ϕ ⊢ α wf

a > 0

ϕ ⊢ a wf

ta(ϕ~σ) ≤ a ϕ ◦ {α 7→ a} ⊢ ~σ wf

ϕ ⊢ µα.(a) T ~σ wf

ta(ϕσ) ≤ a + 1 ϕ ◦ {α 7→ a} ⊢ σ wf

ϕ ⊢ µα.(a)888σ wf

Figure 11: Well-formed terms

C ⊢ a cfr

α 6∈ dom C

C ⊢ α cfr

α 6∈ ~α a ≤ ~a

C; (α, a); (~α,~a) ⊢ α cfr

C; (α, a) ⊢ ~σ cfr

C ⊢ µα.(a)T ~σ cfr

C; (α, a) ⊢ σ cfr

C ⊢ µα.(a)888σ cfr

Figure 12: Cycle-friendly terms

when a term is well-formed, its top atom is an upper bound
for the atoms that occur free in its decoding.

Lemma 5.4 ⊢ σ wf implies max fa(Qσ) ≤ ta(σ). ⋄

If σ is well-formed, then its atoms are required to be positive.
Thus, if σ is well-formed and has a null top atom, then no
atom can be free in Q(σ).

Well-formedness is a local property: it imposes con-
straints between the atom carried by a node and those car-
ried by its children. For this reason, it is preserved by several
basic operations, such as unfolding and unification.

Lemma 5.5 σ =µ σ′ and ⊢ σ wf imply ⊢ σ′ wf. ⋄

Lemma 5.6 If σ and σ′ are well-formed, then so is their
most general unifier, provided it exists. ⋄

Well-formedness allows stating a generalized version of
Lemma 5.3:

Lemma 5.7 If ϕ is well-formed and atom-friendly, then
Q(ϕ)(τ) is Q(ϕ(N(τ))). ⋄

The definition of cycle-friendliness appears in Figure 12.
The context C is a list of couples (α, a). It is omitted in
a judgement when it is empty. In words, a term is cycle-
friendly if and only if, whenever a reverse edge links a leaf
α to some inner node µα.(a) . . ., the atoms that lie on the
direct path from that node down to the leaf are greater
than or equal to a. For instance, the term at upper left
in Figure 10 is not cycle-friendly, because its reverse edge
points to a node labeled (1) and there is a node labeled (0)
on the path down to the origin of the reverse edge.

All terms that lie in the image of N are well-formed and
cycle-friendly. Furthermore, under some conditions, these
notions are preserved by substitution.

Lemma 5.8 If τ is atom-closed, then ⊢ N(τ) wf and ⊢
N(τ) cfr hold. ⋄

Lemma 5.9 If ϕ and σ are well-formed and cycle-friendly,
then so is ϕσ. ⋄

8

(0)∀∀∀

(1)→

1 (0)∀∀∀

(1)→

1

J·K

7−→

(0)∀∀∀

(1)→

1 (0)∀∀∀

(1)→

1 (1)→

1

Figure 14: Normalization example

We prove some auxiliary lemmas, by induction:

Lemma 5.10 (α, a); ~α,~a ⊢ σ cfr and α 6∈ ~α and α ∈ fv(σ)
imply a ≤ ~a. ⋄

Lemma 5.11 (α, ta(σ)); ~α,~a ⊢ σ0 cfr and ⊢ σ wf and α 6∈
~α imply {α 7→ Q(σ)}(Q(σ0)) = Q({α 7→ σ}σ0). ⋄

Lemma 5.12 C ⊢ σ cfr and fv(σ)∩~α = ? imply (~α,~a); C ⊢
σ cfr. ⋄

Lemma 5.13 ⊢ σ cfr and ⊢ σ′ cfr imply ⊢ {α 7→ σ′}σ cfr.⋄

As claimed earlier, for terms that are (well-formed and)
cycle-friendly, Q preserves equality. The proof is by coin-
duction, using the previous lemmas.

Lemma 5.14 Assume σ and σ′ are well-formed and cycle-
friendly. Then, σ =µ σ′ implies Q(σ) =µa Q(σ′). ⋄

A normalization function that maps an arbitrary term
σ to a =µ-equivalent, cycle-friendly term JσK is defined in
Figure 13. (Again, the context C is omitted when empty.)
The idea behind this definition is quite simple: the term
is viewed as a graph and traversed until a friendly cycle is
encountered. The first rule is the stopping criterion, which
checks if we can add a reverse edge to a previously seen
node without breaking cycle-friendliness. The other rules
simply explore and unfold the term, while recording in the
context the names of the encountered nodes. An example is
given in Figure 14, which shows the normalized version of
the troublesome term of Figure 10.

This definition is by well-founded induction on a nonob-
vious ordering. A proof is required to ensure that the defi-
nition is in fact valid.

Lemma 5.15 For every C and every σ, JC, σK is well-
defined. ⋄

As announced above, the properties of normalization are
as follows. The first lemma is proved by induction, the sec-
ond by coinduction.

Lemma 5.16 ⊢ JσK cfr. ⋄

Lemma 5.17 JσK =µ σ. ⋄

At last, we are ready to prove our second result:

Theorem 5.18 Let τ and τ ′ be atom-closed. If ϕ is atom-
friendly and unifies N(τ) and N(τ ′), then τ and τ′ are unifi-
able. ⋄

Proof. Let ϕ be atom-friendly and satisfy ϕ(N(τ)) =µ

ϕ(N(τ ′)). We may assume, without loss of generality, that
ϕ is in fact the most general unifier of N(τ) and N(τ ′): in-
deed, if some unifier is atom-friendly, then the most general
unifier must be atom-friendly as well.

By Lemma 5.8, both N(τ) and N(τ ′) are well-formed
and cycle-friendly. Thus, by Lemma 5.6, ϕ is well-formed.
Thanks to Lemmas 5.16, 5.17, and 5.5, we may assume,
without loss of generality, that ϕ is also cycle-friendly. Then,
by Lemma 5.9, ϕ(N(τ)) and ϕ(N(τ ′)) are well-formed and
cycle-friendly. We now check that Q(ϕ) unifies τ and τ′:

Q(ϕ)(τ) = Q(ϕ(N(τ))) by Lemma 5.7
=µa Q(ϕ(N(τ ′))) by Lemma 5.14
= Q(ϕ)(τ ′) by Lemma 5.7

�

Theorems 5.2 and 5.18 may be summed up as follows:

Theorem 5.19 Let τ and τ ′ be atom-closed. τ and τ′ are
unifiable if and only if N(τ) and N(τ′) are unifiable and
their most general unifier is atom-friendly. ⋄

Theorem 5.19 yields a decision procedure for unifiability
of Fµ types: to determine whether two types are unifiable,
one encodes them, in time O(n log n) (see §7), unifies them
using a standard first-order recursive unification algorithm,
in time O(nα(n)), and checks that the most general unifier is
atom-friendly. By construction, the most general unifier, if
it exists, is well-formed. As a result, by Lemma 5.4, checking
that it is atom-friendly amounts to checking that the top
atom of every term in its image is zero. This check may be
performed in time O(n). Thus, the time complexity of the
overall process is O(n log n).

In general, constructing the most general unifier of the
original unification problem requires invoking the normal-
ization function J·K, whose time complexity we have not yet
assessed.

6 Correctness of the encoding w.r.t. entailment

The entailment problem for type equations consists in de-
ciding, given τ, τ ′, α, β, whether, for every atom-closed sub-
stitution θ, θτ =µa θτ ′ implies θα =µa θβ. When this
property holds, we write τ = τ ′ |= α = β. The entail-
ment problem for equations between first-order terms, writ-
ten σ = σ′ |= α = β, is defined analogously. By exploiting
the theory developed in §5, it is not difficult to prove that
the former may be reduced to the latter:

Theorem 6.1 τ = τ ′ |= α = β is equivalent to N(τ) =
N(τ ′) |= α = β. ⋄

The entailment problem, at the first order, may be de-
cided in time O(nα(n)), by exploiting the following prop-
erty: σ = σ′ |= α = β holds if and only if either σ and
σ′ are non-unifiable or their most general unifier ϕ satis-
fies ϕα =µ ϕβ. As a result, the entailment problem, at
the second order, may be decided in time O(n log n), where
O(n log n) is the cost of the encoding (see §7).

7 Implementing the encoding

The definition of N (Figure 6) is a nice specification of the
encoding, but does not suggest an efficient implementation.
Indeed, it suggests traversing the source type τ, and, at every

9

In order of applicability :

JC, σK = α if ∃α, σ0 (σ = α ∨ σ =µ σ0)
∧ C = (C′; α, σ0; (~α, ~σ))
∧ ta(σ0) ≤ ta(~σ)

JC, aK = a
JC, αK = α if α 6∈ dom C

= JC, σK if C = (C′; α, σ; (~α, ~σ)) and α 6∈ ~α
JC, σK = µα.(a)T JC; (α, σ), ~σK if σ = µα.(a) T ~σ
JC, σK = µα.(a)888 JC; (α, σ), σ′

K if σ = µα.(a)888σ′

Figure 13: Turning a term into a =µ-equivalent, cycle-friendly term

ς := α
| a
| [p, n, n′]µα.(a) T ~ς
| [p, n, n′]µα.(a)888 ς

Figure 15: Intermediate data structure

node τ′, (i) computing the greatest atom a that occurs free
in τ′, taking reverse edges into account, and (ii) if an atom
is bound here, renaming it to a+1 throughout τ′. The time
required by this process is quadratic in the size of τ.

Fortunately, by proceeding in a more clever manner, it is
possible to achieve a better complexity bound. This is the
topic of the present section. We first give a lower-level, but
equivalent, definition of N . Then, we briefly describe the
data structures required to implement it efficiently.

7.1 A lower-level definition of the encoding

According to the definition of N , we need to compute, for
each subtree τ, the atom max fa θτ, where θ depends on the
context above τ and maps variables to atoms. In short, θ
represents the contribution of the reverse edges whose source
node lies inside τ and whose end node lies above τ. A key
idea is then to exploit the following identity:

max fa(θτ) = max {max fa τ, max {θα / α ∈ fv(τ)}}

In words, one may separately compute the greatest atom
that appears free in τ, on the one hand, and the contribution
of the reverse edges that leave τ, on the other hand.

This suggests splitting the encoding process into two dis-
tinct, consecutive phases. The first phase annotates every
node with the greatest atom that appears free below it, com-
puted in a bottom-up manner. The second phase then exam-
ines each node in a top-down fashion. Using the information
gathered by the first phase, it is able to compute the contri-
bution of the reverse edges, to assign the node its definitive
name, and to propagate this renaming information towards
its children.

The two passes are defined in Figure 16. We now explain
them.

7.1.1 First pass

The first pass is represented by the function fp. It accepts
a 5-tuple of the form (l, A, R, n, τ) and returns a 4-tuple of
the form (A, R, n, ς). The input-output parameters A, R,
and n may be implemented using global, mutable variables.

The first pass performs a depth-first traversal of τ, the
type to be encoded. Reverse edges are not traversed. Every
atom or variable encountered along the way is numbered
sequentially; we refer to these numbers as positions. The
variable n, an integer counter, holds the next unassigned
position. After an atom a is found at position n, the associ-
ation n 7→ a is recorded. The variable A, a partial mapping
of positions to atoms, is used for this purpose. After a vari-
able α is found at position n, the association α 7→ n is
recorded. The variable R, a relation between variables and
positions, is used for this purpose.

Upon entering a node τ, the next unassigned position,
that is, the current value of n, is recorded; let us refer to it
as n0. When later leaving the node, the atoms that occur
(free or bound) in τ are exactly the atoms whose position
(as recorded in A) is greater than or equal to n0. This is a
start, but we need to determine the atoms that occur free
in τ.

To this end, we require bound atoms to satisfy a certain
property, which one might think of as a reverse De Bruijn
numbering: the atom bound at a ∀ node must be the node’s
level, where the level of a node is defined as the number of
∀ nodes that lie on the path from the root to that node. Of
course, the machine representation of the type that must be
encoded may not satisfy this property, so it is renamed, on
the fly, as part of the first pass. The parameter l is used to
hold the current level. The last equation in the definition of
fp has ∀l.τ in its left-hand side, which means that whatever
atom was bound here is renamed to l on the fly.

We now come back to the problem of determining the
atoms that occur free under a node τ. If the node’s level is
l, then, by the above property, the free atoms of τ are the
atoms that occur in τ and that are less than l, that is, the
atoms whose position is greater than or equal to n0 and that
are less than l. Thus, the greatest free atom under τ may
be written max {a / (p 7→ a) ∈ A ∧ a < l ∧ p ≥ n0}. This
explains why this expression appears in the third and last
defining equations for fp.

The first pass produces an annotated first-order term
ς, whose syntactic category is defined in Figure 15. This
grammar is reminiscent of that of Figure 4. In particular,
every non-leaf node carries an annotation (a), which records
the greatest atom that appears free under that node. In
preparation for the second pass, every node that binds a
variable α also records the positions p where α occurs. In
other words, these are the origins of the reverse edges that
lead to the present node. (In Figure 16, we write (α 7→ p)
for the relation that contains (α 7→ p) for every p ∈ p.)
Last, every non-leaf node records the positions n and n′ that
delimit its subtree: the variables that occur in its subtree

10

fp(l, A, R, n, α) = (A, R ∪ (α 7→ n), n + 1, α)

fp(l, A, R, n, a) = (A ∪ (n 7→ a), R, n + 1, a)

fp(l, A0, R0, n0, µα.T τ1 . . . τk) = (Ak, R′, nk, [p, n0, nk]µα.(a) T ς1 . . . ςk) α 6∈ dom(R0)
if (Ai, Ri, ni, ςi) = fp(l, Ai−1, Ri−1, ni−1, τi) for i ∈ {1, . . . , k}
and R′ ∪ (α 7→ p) = Rk α 6∈ dom(R′)
and a = max {a / (p 7→ a) ∈ Ak ∧ a < l ∧ p ≥ n0}

fp(l, A0, R0, n0, µα.∀l.τ) = (A1, R
′, n1, [p, n0, n1]µα.(a)888 ς) α 6∈ dom(R0)

if (A1, R1, n1, ς) = fp(l + 1, A0, R0, n0, τ)
and R′ ∪ (α 7→ p) = R1 α 6∈ dom(R′)
and a = max {a / (p 7→ a) ∈ A1 ∧ a < l ∧ p ≥ n0}

sp(l, F, φ, α) = α

sp(l, F, φ, a) = φ(a)

sp(l, F, φ, [p, n, n′]µα.(a)T ~ς) = µα.(b) T sp(l, F ∪ (p 7→ b), φ, ~ς)
if b = max ({φ(a)} ∪ {b / (p 7→ b) ∈ F ∧ n ≤ p < n′})

sp(l, F, φ, [p, n, n′]µα.(a)888 ς) = µα.(b)888 sp(l + 1, F ∪ (p 7→ b), φ ◦ {l 7→ b + 1}, ς)
if b = max ({φ(a)} ∪ {b / (p 7→ b) ∈ F ∧ n ≤ p < n′})

Nalg(τ) = sp(1, ∅, id, π4(fp(1, ∅, ∅, 0, τ)))

Figure 16: The first and second passes of the encoding algorithm

have positions in the interval [n, n′).

7.1.2 Second pass

The second pass is represented by the function sp. It accepts
a 4-tuple (l, F, φ, ς) and returns a first-order term σ. The
parameter l plays the same role as in the first pass. The
parameter φ is a renaming of atoms. It explicitly records
the α-conversion steps which, in the original definition of
N , were implicit.

Recall that we must compute, at each node, the maxi-
mum of (i) the greatest atom that occurs free in the subtree
rooted at this node, and (ii) the greatest atom contributed
by the reverse edges that leave this subtree.

As for the former, max fa(τ) was computed during the
first pass, and recorded as the atom (a) carried by the node.
There is, however, a subtlety: since we are applying the
renaming φ, on the fly, to the term at hand, we really wish
to compute max fa(φτ). Fortunately, it is possible to prove
that φ is increasing on fa(τ). (In other words, l, l′ ∈ fa(τ)
and l < l′ imply φ(l) < φ(l′). This holds mainly because,
by construction, φ(l′) is at least max {fa(φτ) \ φ(l′)} + 1.)
As a result, max fa(φτ) is φ(max fa(τ)), that is, φ(a). This
explains why φ(a) appears in the third and last defining
equations for sp.

As for the latter, we maintain a structure F that plays
almost the same role as θ in Figure 6, but, instead of
mapping variables to atoms, maps positions (of said vari-
ables) to atoms. Consider a node that was annotated, dur-
ing the first pass, with the interval [n, n′). Every variable
that appears free in the subtree rooted at this node ap-
pears at a position in the interval [n, n′). Thus, the great-
est atom contributed by the free variables of this subtree
(that is, by the reverse edges that leave this subtree) is
max {b / (p, b) ∈ F ∧ n ≤ p < n′}. This explains why this
expression appears in the third and last defining equations
for sp.

The previous two paragraphs explain the definition of b
in the third and last defining equations for sp. Once b is
known, the node is definitively annotated with (b). If an

atom is bound at this node (then, it must be l, the node’s
level), it must be definitively renamed to b + 1, which ex-
plains why φ is composed with {l 7→ b + 1} in the last
defining equation for sp.

Last, once the current node has been annotated with b,
we know that the reverse edges whose endpoint is this node
should be viewed as contributing b to the greatest free atom
computation. If the variable bound at the current node is
α, then the origins of these edges are the (free) occurrences
of α in the subtree rooted at this node, whose positions
have been determined during the first pass, and recorded as
p. Thus, before moving on to the current node’s children,
we update F with the mapping (p 7→ b), which stands for
{(p 7→ b) / p ∈ p}.

7.2 Correctness

Composing the first and second passes yields a mapping Nalg

of types to terms, whose definition appears in Figure 16.
(There, π4 stands for the function that projects the fourth
component out of a tuple.) As desired, Nalg provides a
correct implementation of the encoding N . This is stated
by the following theorem, whose proof is omitted:

Theorem 7.1 N(τ) = Nalg(τ). ⋄

7.3 Complexity

We have divided the encoding task in two passes, each of
which consists of a tree traversal. Let n measure the size of
the input type τ. One may check that the size of the term ς
produced by the first pass is bounded by O(n), even though
some nodes are annotated with lists of positions p. This is
because every position p ∈ p represents a distinct variable
occurrence in τ. Similarly, the size of the data structures R,
A, and F is bounded by O(n).

Then, in order to show that the time complexity of the
encoding is O(n log n), we must check that the amount of
work performed at each node, during each pass, is bounded
by O(log n).

11

By inspection of Figure 16, the non-constant time oper-
ations performed at a node are: renaming operations (im-
plicit in the first pass, where the reverse De Bruijn num-
bering property is enforced, and explicit in the second pass,
where the renaming φ is constructed and applied), and in-
teractions with the data structures R, A, and F . We study
them below.

The renaming operations, which consist in applying a
renaming to an atom or extending a renaming with a new
binding, may be implemented in time O(log n) using some
flavor of balanced trees. In the second pass, they may in
fact be implemented in time O(1) and in linear space, using
an array. Indeed, the elements of the domain of φ are levels,
and the maximum level, which is bounded by the depth of
the tree, can easily be computed ahead of time.

Concerning R, the required operations are inserting a
new binding, and retrieving and removing all bindings as-
sociated with a given variable. Provided variables carry an
integer identifier, a map of integers to integer lists, imple-
mented using balanced trees, again does the job in time
O(log n).

Concerning A, the required operations are inserting a
new binding and, given n0 and l, computing max {a / (p 7→
a) ∈ A ∧ a < l ∧ p ≥ n0}. The latter may in fact be decom-
posed into two simpler operations, namely, given A and l,
extracting the subset {(p 7→ a) / (p 7→ a) ∈ A ∧ a < l} and,
given A and n0, computing max {a / (p 7→ a) ∈ A∧ p ≥ n0}.
To implement these operations efficiently, one can use a bi-
nary trie where keys are atoms, with an additional invariant:
each node of the trie records the maximum position that
occurs in a node below it. Subset extraction then simply
amounts to truncating the domain of the trie, while taking
care to maintain the additional invariant. The last opera-
tion amounts to a binary search, where no backtracking is
required, thanks to the additional invariant. All three oper-
ations may be implemented to run in time O(log n).

Concerning F , the required operations are inserting a
binding, and, given n and n′, computing max {b / (p 7→ b) ∈
F ∧n ≤ p < n′}. One can use the same data structure as in
the previous paragraph, except the keys are now positions,
and each node holds the maximum atom that occurs below
it. The last operation above can be implemented by trun-
cating F along n and n′ and reading the maximum atom at
the root of the resulting trie, again in time O(log n).

Thus, we have proved:

Theorem 7.2 If τ has size n, then Nalg(τ) may be com-
puted in space O(n) and time O(n log n). ⋄

An OCaml implementation is available online [11].

8 Conclusion

Our results are intended as a first step towards promoting
the use of equirecursive types in type-preserving compilers.
So far, most type-preserving compilers for object-oriented
languages seem to have relied on isorecursive types, because
their metatheory was better understood; see, for instance,
[15]. We do believe, however, that equirecursive types are
more powerful and more elegant, and should be preferred,
provided appropriate decision algorithms are available.

It is worth noting that our results still hold when
rows [19, 20] are added to the syntax of types. The def-
inition of the encoding N requires no change. The key
point is that the equational theory of rows is compatible

with the notion of free atoms, on which the encoding relies:
that is, the laws fa(l1 : τ1; l2 : τ2; τ) = fa(l2 : τ2; l1 : τ1; τ)
and fa(l : τ; ∂τ) = fa(∂τ) hold. So, the reduction to first-
order recursive terms is identical. There only remains to use
(standard) algorithms for comparing or unifying first-order
recursive terms in the presence of rows. This is an impor-
tant point, since many object encodings exploit rows; see,
for instance, [15].

The most natural direction for future research is to move
from Fµ to F ω

µ , since higher kinds and type operators are
heavily used in many object encodings. In particular, we
believe that there are natural object encodings where the µ
quantifier is used at higher kinds, as opposed to only at the
base kind ⋆. However, the unrestricted combination of type
operators and recursive types is problematic, since it gives
rise to (i) types whose infinite unfoldings are not regular and
(ii) types that do not even have weak head normal forms.
Thus, identifying a suitable restriction of equirecursive F ω

µ

that has decidable type equality is an attractive problem.

References

[1] Mart́ın Abadi and Marcelo P. Fiore. Syntactic consider-
ations on recursive types. In IEEE Symposium on Logic
in Computer Science (LICS), pages 242–252, July 1996.

[2] Michael Brandt and Fritz Henglein. Coinductive ax-
iomatization of recursive type equality and subtyping.
Fundamenta Informaticæ, 33:309–338, 1998.

[3] Kim B. Bruce, Luca Cardelli, and Benjamin C. Pierce.
Comparing object encodings. Information and Compu-
tation, 155(1/2):108–133, November 1999.

[4] Dario Colazzo and Giorgio Ghelli. Subtyping recursive
types in Kernel Fun. In IEEE Symposium on Logic in
Computer Science (LICS), pages 137–146, July 1999.

[5] Gregory D. Collins and Zhong Shao. Intensional anal-
ysis of higher-kinded recursive types. Technical Report
YALEU/DCS/TR-1240, Yale University, 2002.

[6] Jeffrey Considine. Efficient hash-consing of recursive
types. Technical Report 2000-006, Boston University,
January 2000.

[7] Karl Crary. Simple, efficient object encoding using in-
tersection types. Technical Report CMU-CS-99-100,
Carnegie Mellon University, 1999.

[8] Gilles Dowek. Higher-order unification and matching.
In J. Alan Robinson and Andrei Voronkov, editors,
Handbook of Automated Reasoning, pages 1009–1062.
Elsevier Science, 2001.

[9] Murdoch J. Gabbay and Andrew M. Pitts. A new ap-
proach to abstract syntax with variable binding. Formal
Aspects of Computing, 13(3–5):341–363, July 2002.

[10] Vladimir Gapeyev, Michael Levin, and Benjamin
Pierce. Recursive subtyping revealed. Journal of Func-
tional Programming, 12(6):511–548, 2003.

[11] Nadji Gauthier. Implementation of N . http://caml.
inria.fr/~gauthier/naming.tar.gz, April 2004.

12

[12] Neal Glew. An efficient class and object encod-
ing. In ACM Conference on Object-Oriented Program-
ming, Systems, Languages, and Applications (OOP-
SLA), pages 311–324, October 2000.

[13] Neal Glew. A theory of second-order trees. In Eu-
ropean Symposium on Programming (ESOP), volume
2305 of Lecture Notes in Computer Science, pages 147–
161. Springer Verlag, April 2002.

[14] Gérard Huet. Résolution d’équations dans des langages
d’ordre 1, 2, . . ., ω. PhD thesis, Université Paris 7,
September 1976.

[15] Christopher League, Zhong Shao, and Valery Trifonov.
Representing Java classes in a typed intermediate lan-
guage. In ACM International Conference on Functional
Programming (ICFP), pages 183–196, September 1999.

[16] Christopher League, Zhong Shao, and Valery Trifonov.
Type-preserving compilation of Featherweight Java.
ACM Transactions on Programming Languages and
Systems, 24(2):112–152, March 2002.

[17] Benjamin C. Pierce. Types and Programming Lan-
guages. MIT Press, 2002.

[18] François Pottier and Nadji Gauthier. Polymorphic
typed defunctionalization. In ACM Symposium on
Principles of Programming Languages (POPL), pages
89–98, January 2004.

[19] Didier Rémy. Projective ML. In ACM Symposium on
Lisp and Functional Programming (LFP), pages 66–75,
1992.

[20] Didier Rémy. Type inference for records in a natural ex-
tension of ML. In Carl A. Gunter and John C. Mitchell,
editors, Theoretical Aspects Of Object-Oriented Pro-
gramming. Types, Semantics and Language Design.
MIT Press, 1994.

[21] Christian Urban, Andrew Pitts, and Murdoch Gabbay.
Nominal unification. In Computer Science Logic, vol-
ume 2803 of Lecture Notes in Computer Science, pages
513–527. Springer Verlag, August 2003.

[22] Hongwei Xi, Chiyan Chen, and Gang Chen. Guarded
recursive datatype constructors. In ACM Symposium
on Principles of Programming Languages (POPL), Jan-
uary 2003.

13

