
1

FUNCTIONAL PEARL

Lazy Least Fixed Points in ML

FRANÇOIS POTTIER∗
INRIA Paris-Rocquencourt

B.P. 105
78153 Le Chesnay Cedex, France

1 Introduction

In this paper, we present an algorithm for computing the least solution of a system
of monotone equations. This algorithm can be viewed as an effective form of the
following well-known fixed point theorem:

Theorem Let V be a finite set of variables. Let (P,≤,⊥) be a partially ordered set
of properties with a least element and with finite height. Let E : V → (V → P) → P
be a system of monotone equations; that is, for every v ∈ V, let E(v) be a monotone
function of V → P, ordered pointwise, into P. Then, there exists a least valuation
φ : V → P such that, for every v ∈ V, φ(v) = E(v)(φ). ¦
We refer to the function E as a system of equations because to every left-hand
side—a variable—it associates a right-hand side—something that can be evaluated
to a property, provided every variable is assigned some property.

Why might such an algorithm be of interest? Broadly speaking, it is useful in
the analysis of cyclic structures: grammars, control flow graphs, transition systems,
etc. For instance, it can be used to determine which non-terminal symbols of a
context-free grammar produce the empty word, and to compute “first” and “fol-
low” sets. More generally, least fixed point computations are required in data flow
analysis (Kildall, 1973; Kam & Ullman, 1976), abstract interpretation (Cousot &
Cousot, 1977), and model checking of temporal logic formulae (Liu & Smolka, 1998).

The simplest algorithm, known as Kleene iteration, computes a sequence of val-
uations, defined by φ0 = λv.⊥ and φn+1 = λv.E(v)(φn). That is, at each iteration,
the right-hand side of every equation is re-evaluated.

Of course, Kleene iteration is inefficient. A more natural idea is to re-evaluate a
single right-hand side at a time, and, at each step, to appropriately decide which
right-hand side to re-evaluate. In particular, one should re-evaluate the right-hand
side associated with a variable v2 only if the property associated with some vari-
able v1, where v2 depends on v1, has changed since v2 was last examined. This
scheme, known as chaotic iteration, appears in many papers; one of the earliest
sources is perhaps Kildall (1973).

∗ (e-mail: Francois.Pottier@inria.fr)

2 F. Pottier

But what does it mean for v2 to depend on v1? When the right-hand sides are just
syntax, one may consider that v2 depends on v1 if the right-hand side E(v2) contains
an occurrence of v1. When the right-hand sides are functions in (V → P) → P,
as is the case here, this amounts to considering that v2 depends on v1 if, for some
valuation φ, the evaluation of E(v2)(φ) requires the evaluation of φ(v1). This relation
is known as static dependency, because its graph can be built ahead of time, before
the iterative computation begins.

A more interesting, and perhaps surprising, approach is to consider that v2 de-
pends on v1 if the last evaluation of E(v2)(φ) required the evaluation of φ(v1), where
φ was the then-current valuation. This relation is known as dynamic dependency,
because its graph evolves as the iterative computation progresses. When the right-
hand sides are functions, dynamic dependencies can be discovered by observing
the behavior of these functions, that is, by observing how they interact with their
argument φ.

In this paper, we present an algorithm—an on-demand version of chaotic iteration
with dynamic dependencies—with a simple interface, good asymptotic complexity,
and a 180 line implementation (Pottier, 2009a).

Fixed point computation algorithms seem to be often re-invented and re-imple-
mented in ad hoc ways. The author believes that a modular, re-useable version of
such an algorithm can be useful in many situations. It should help programmers
focus on constructing a concise problem statement, in the form of a system of
equations, and avoid the pitfall of mixing problem statement and iteration logic.

Our algorithm is implemented in imperative ocaml code, but presents a purely
functional, higher-order interface. How and why encapsulation is properly achieved
is somewhat subtle, and would deserve formal verification. The author offers this
as a challenge to researchers interested in modular formal proofs of ML programs.

2 Interface

The fixed point computation algorithm is packaged as an ocaml module, Fix . This
module defines a functor, Fix.Make, which expects two parameters: an implemen-
tation of maps over variables and a partially ordered set of properties. The functor
produces a function lfp that accepts a system of monotone equations and produces
its least solution.

2.1 Maps

A signature for imperative maps appears in Figure 1. A module that implements
this signature must supply a fixed type of keys, key ; a type of maps, ’data t , which
is parametric in the type of the data that is stored in the maps; and operations to
create a fresh map in an empty state (create), revert an existing map to an empty
state (clear), add an entry to a map (add), look up a key in a map (find), and
iterate over all entries in a map (iter). The function find is expected to raise the
exception Not found , defined in ocaml’s standard library, if the key is absent.

Imperative maps are mutable data structures: create produces a fresh map; clear

Functional pearl 3

module type IMPERATIVE MAPS = sig
type key
type ’data t
val create: unit → ’data t
val clear : ’data t → unit
val add : key → ’data → ’data t → unit
val find : key → ’data t → ’data
val iter : (key → ’data → unit) → ’data t → unit

end

Fig. 1. A signature for imperative maps

module type PROPERTY = sig
type property
val bottom: property
val equal : property → property → bool

end

Fig. 2. A signature for properties

module Make
(M : IMPERATIVE MAPS)
(P : PROPERTY)
: sig

type variable = M.key
type property = P.property
type valuation = variable → property
type rhs = valuation → property
type equations = variable → rhs
val lfp: equations → valuation

end

Fig. 3. The algorithm’s interface

and add modify an existing map. Imperative maps are a weaker requirement than
persistent maps: an imperative map is easily obtained by wrapping a persistent map
in a reference cell. Thus, the client is free to choose between an efficient imperative
implementation, such as arrays and hash tables, and a persistent implementation,
such as the balanced binary trees offered by ocaml’s standard library module Map.

2.2 Properties

A signature for properties appears in Figure 2. Properties must be equipped with
a partial order, that is, a reflexive, antisymmetric, transitive relation, written ≤.
There must be a least property, bottom. Perhaps surprisingly, an implementation of
the ordering is not required: we just need equality, equal . bottom is used as the initial
element of an ascending Kleene chain, while equal is used to detect stabilization.

2.3 The functor Make

The functor Make (Figure 3) is parameterized with an implementation M of maps
over variables and an implementation P of properties. Its result signature begins

4 F. Pottier

with a number of auxiliary type definitions. In particular, a valuation is a mapping
of variables to properties; a right-hand side is a (monotone) mapping of valuations to
properties; a system of equations is a mapping of variables to right-hand sides. Then
comes the main function, lfp, which maps a system of equations to its least fixed
point, a valuation. The system of equations, which is named eqs in the following,
has type equations, that is, variable → (variable → property) → property . This
corresponds to our earlier notation V → (V → P) → P.

It is guaranteed that the application eqs v is performed at most once per vari-
able v . This enables the client to perform expensive pre-computation, or to allocate
an auxiliary data structure, at this time. Without this guarantee, there could arise a
need for the client to maintain an explicit map of variables to auxiliary data. Here,
this mechanism is offered transparently. This staging opportunity is the reason why
we define equations as variable → (variable → property) → property , as opposed
to the arguably more standard (variable → property) → (variable → property).

The functor Make produces the least solution of the system of equations. This
takes the form of a function, henceforth referred to as get , of type variable →
property . The algorithm is lazy: no actual computation takes place when Make is
applied. The fixed point computation takes place, on demand, when get is applied.
Memoization is performed, so that two invocations of get at a single variable v, or
at two variables v1 and v2 that are related in the dependency graph, do not cause
repeated work.

2.4 Specification

Since we offer this code as a proof challenge, it is worth devoting some space to
its specification. We do not wish to impose the use of a specific methodology, so
the specification that we sketch remains informal. We do have in mind a plausible
approach, namely the use of a program logic in the style of Hoare, under a partial
correctness interpretation. Tools that follow this approach include Pangolin (Régis-
Gianas & Pottier, 2008) and Ynot (Chlipala et al., 2009).

We assume that we know what it means for an ocaml value of type variable to
implement a mathematical object v ∈ V, and for an ocaml value of type property
to implement a mathematical object p ∈ P . In a formal treatment, these predicates
would be abstract: that is, they would be parameters of the functor Make.

Let P be a mathematical predicate of one argument. An ocaml expression e is
said to satisfy the post-condition P if the following conditions are met:

1. the execution of e does not have any side effect, such as mutating a reference,
or throwing a catchable exception; (however, the execution of e may diverge,
and may cause a fatal failure by executing the instruction assert false;)

2. if the execution of e successfully completes, then the ocaml value that is
produced implements some mathematical object x such that P x holds.

An expression e is said to compute x if it satisfies the post-condition λy.(y = x).
This is the partial correctness interpretation of a post-condition.

Functional pearl 5

We now use these basic notions in a straightforward way to define higher-order
versions of the “implements” predicate. These definitions form the specification.

1. An ocaml function request of type valuation implements φ ∈ V → P if, for
every w ∈ V and for every ocaml value v that implements w, the ocaml

expression request v computes φ(w).
2. An ocaml function eqs of type equations implements E ∈ V → (V → P) → P

if, for every w ∈ V and φ ∈ V → P, for all ocaml values v and request that
respectively implement w and φ, the ocaml expression eqs v request computes
E(w)(φ).

3. An ocaml function lfp of type equations → valuation implements a least
fixed point algorithm if, for every system of monotone equations E and for
every ocaml function eqs that implements E , the ocaml expression lfp eqs
computes an ocaml function, say get , such that get implements the least
solution of E .

This is a purely functional specification, in the sense that the function that the
client must provide (eqs) is requested to have no side effect, and the functions that
we provide (request , lfp, and get) claim to have no side effect.

The challenge is to prove that the version of lfp presented in this paper does
implement a least fixed point algorithm in the above sense, or (to put it slightly
differently) that it is sound for the client to believe so. We discuss the problem
further in §3.7 and §4.1.

2.5 How the algorithm is used

In order to use the algorithm, it suffices to instantiate the formal parameters M ,
P , and eqs. We illustrate this in Figure 4 by showing actual code for computing
the nullable symbols of a context-free grammar. The code is parameterized with an
implementation of maps over nonterminal symbols and with a description of the
grammar itself. The property space is Boolean, a 5-line module (not shown) whose
signature is PROPERTY with type property = bool . The code seems as concise
as one could hope.

3 Implementation

The algorithm’s implementation relies on a number of mutable auxiliary data struc-
tures: a dependency graph; a workset; a couple of tables that respectively hold per-
manent and transient data. We briefly describe these data structures, then move
on to the algorithm’s core functions.

Everything that follows is placed within the definition of Make and within the
definition of lfp. This means that we are free to refer to the formal parameters M ,
P , and eqs. This also implies that a distinct instance of the algorithm’s mutable
state is created afresh at every call to lfp.

6 F. Pottier

module type GRAMMAR = sig
type terminal
type nonterminal
type production =

Epsilon
T of terminal
N of nonterminal
Seq of production × production
Alt of production × production

val productions: nonterminal → production
end

module Analyze
(M : IMPERATIVE MAPS)
(G : GRAMMAR with type nonterminal = M.key)

= struct
open G
module F = Fix.Make(M)(Boolean)
let nullable : nonterminal → bool =

F.lfp (fun nt request →
let rec nullable = function

Epsilon → true
T → false
N nt → request nt
Seq (prod1, prod2) → nullable prod1 ∧ nullable prod2

Alt (prod1, prod2) → nullable prod1 ∨ nullable prod2

in nullable (productions nt)
)

end

Fig. 4. Finding which symbols in a context-free grammar are nullable

3.1 The dynamic dependency graph

We maintain a directed graph whose edges represent dependency information: an
edge v2 → v1 means that v2 depends on v1. We also say that v2 observes v1, or that
v1 is a subject of v2. A signal travels along this edge, from subject v1 to observer v2,
when the value associated with v1 changes. A variable may observe itself.

The graph is dynamic. When the algorithm is inactive (that is, outside an invo-
cation of get), the graph is empty. During a run of the algorithm (that is, during
an invocation of get), the set of its nodes grows with time, as new variables are
discovered (the set of all variables is not known in advance), while the set of its
edges changes with time: an edge v2 → v1 might appear at some point in time, and
disappear at some later point.

For increased modularity, the signature (Figure 5) and implementation of the
graph data structure are stand-alone. They could, if desired, be placed in a separate
module, with no reference to Fix . The type of the graph nodes, ’data node, is
parametric in a type variable ’data. Each graph node carries a piece of data, which is
provided when the node is created (create), and can be looked up at any time (data).

Three functions are provided to inspect and modify edges. predecessors n pro-

Functional pearl 7

module Graph : sig
type ’data node
val create: ’data → ’data node
val data: ’data node → ’data
val predecessors: ’data node → ’data node list
val set successors: ’data node → ’data node list → unit
val clear successors: ’data node → unit

end

Fig. 5. A signature for the dependency graph

type node =
data Graph.node

and data =
{ rhs: rhs; mutable property : property }

let property node =
(Graph.data node).property

Fig. 6. The data carried by each graph node

duces a list of the predecessors of the node n. set successors n ns assumes that
the node n initially has no successors, and creates an edge from n to each of the
nodes in the list ns. Only one edge per destination node is created, even if ns has
duplicate elements. clear successors n removes all of the edges that leave node n.

Implementing this signature is a simple exercise in imperative programming. The
code is not shown: it can be found online (Pottier, 2009a).

3.2 Node data

Each graph node stands for a variable v , and carries information about this variable.
This is shown in Figure 6. The field rhs stores the result of the application eqs v ,
so that we can hold our promise of performing this application at most once. The
mutable field property holds the current property, a lower approximation of the
fixed point, at v . During a run, its value increases with respect to ≤. The function
property provides access to this field.

3.3 The workset

The workset is a data structure where elements are inserted and retrieved in an
arbitrary order. The elements of the workset are graph nodes. A node never occurs
twice in the workset. Our implementation is based on ocaml’s standard library
module Queue, which provides FIFO ordering. One could just as well use Stack
instead, which provides LIFO ordering, or a priority queue, with heuristic priori-
ties (Demers et al., 1987).

The workset offers just two functions (Figure 7). insert n inserts the node n into
the workset. repeat f repeatedly applies the function f to a node extracted out of

8 F. Pottier

module Workset : sig
val insert : node → unit
val repeat : (node → unit) → unit

end

Fig. 7. A signature for the workset

let signal subject =
List.iter (fun observer →

Graph.clear successors observer ;
Workset.insert observer

) (Graph.predecessors subject)

Fig. 8. Emitting a signal

let permanent : property M.t =
M.create()

let transient : node M.t =
M.create()

let freeze () =
M.iter (fun v node →

M.add v (property node) permanent
) transient ;
M.clear transient

Fig. 9. Tables

the workset, until the workset becomes empty. The function f is allowed to use
insert .

When the algorithm is inactive, the workset is empty.

3.4 Subjects, observers, signals

We can now explain the subject-observer mechanism in greater detail. A node is
either awake or asleep. It is awake when it is scheduled for examination, that is,
when it is in the workset. In that case, it is never an observer: that is, it has no
successors in the graph. It is asleep when it is not in the workset. In that case, it
observes a number of nodes, its subjects, and is awoken when one of them emits a
signal.

A signal emitted by some subject is broadcast to all of its observers (Figure 8).
By the above invariant, these observers must be asleep, that is, out of the workset.
Each of them is awoken, in turn, which means that it stops observing (it loses all
of its own successors) and is inserted into the workset.

3.5 Tables

The algorithm maintains a couple of tables (Figure 9). Both are maps whose keys
are variables. They have disjoint domains.

Functional pearl 9

The permanent table maps variables to properties. It is a fragment of the least
solution of the system of equations. It persists across runs. It is initially empty, and
grows forever. It is used to implement memoization.

The transient table maps variables to graph nodes. It is used only within a run:
when the algorithm is inactive, it is empty. During a run, it fills up with new nodes,
which represent variables that may not yet have reached a fixed point. At the end
of a run, every variable is known to have stabilized, so the properties contained in
the transient table are copied into the permanent table, and the transient table is
cleared. This task is performed by freeze.

3.6 The core algorithm

The core of the algorithm is in the functions solve and node for (Figure 10). A
call to solve node evaluates the right-hand side at node. If this leads to a change,
then the current property is updated, and node emits a signal towards its observers.
The auxiliary function node for v returns a node associated with the variable v ,
assuming that v does not appear in the permanent table.

When solve node is invoked, node is not in the workset, and has no subject.
In order to re-evaluate the right-hand side at node, we invoke the client function
data.rhs, where data is the data record associated with node. We must offer the
client read access to the current valuation: this is done by passing request as a
parameter to data.rhs. As far as the client is concerned, request is a pure function:
to a variable v , it associates a property. It does this, internally, by looking up v in
the permanent table, which succeeds if the least solution at v has been computed
during an earlier run; and, if that fails, by invoking node for to obtain the node
subject that stands for v and by returning the current property at that node.

In reality, request does more than that: it also spies on the client. A call to
request that succeeds by looking up the permanent table is side-effect free, as one
might expect. However, if a call to request goes through node for and returns the
current property at a certain node subject , then the fact that node depends on
subject is logged. This is done by inserting subject in the list subjects. After data.rhs
completes, the nodes accumulated in the list subjects actually become subjects of
node, through a call to set successors. The dynamic dependencies obtained in this
way are correct by construction: if data.rhs satisfies its specification, then its result
must be determined by the values that it requested.

The flag alive is explained later on (§3.7).
After data.rhs returns, solve compares the current property with the new prop-

erty produced by data.rhs. If they differ (which means, in fact, that the latter is
strictly greater than the former), then the current property is updated, and a signal
is sent, so all observers of node are scheduled for re-examination.

The auxiliary function node for returns a node for a variable v that does not
appear in the permanent table. If a node is already associated with v , it is found
in the transient table. Otherwise, v is a newly discovered variable. A new node,
holding the property bottom, is allocated, and a new entry is made in the transient
table.

10 F. Pottier

let rec solve (node : node) : unit =
let data = Graph.data node in
let alive = ref true
and subjects = ref [] in
let request (v : variable) : property =

assert !alive;
try

M.find v permanent
with Not found →

let subject = node for v in
subjects := subject :: !subjects;
property subjectin

let new property = data.rhs request in
alive := false;
Graph.set successors node !subjects;
if not (P.equal data.property new property) then begin

data.property ← new property ;
signal node

end

and node for (v : variable) : node =
try

M.find v transient
with Not found →

let node = Graph.create { rhs = eqs v ; property = P.bottom } in
M.add v node transient ;
solve node; (*or : Workset.insert node *)
node

let inactive =
ref true

let get (v : variable) : property =
try

M.find v permanent
with Not found →

assert !inactive;
inactive := false;
let node = node for v in
Workset.repeat solve;
freeze();
inactive := true;
property node

Fig. 10. The core algorithm

There is a choice between scheduling a newly created node for later examination,
by inserting it into the workset, or examining it immediately, via a recursive call
to solve. The former option is simpler. The latter may seem conceptually bolder
(solve calls data.rhs calls request calls node for calls solve...), but is correct as well.
Because a newly discovered node has no observers, this call to solve does not wake

Functional pearl 11

up any existing nodes, a welcome feature. This option permits a form of eager top-
down discovery of new nodes. If the dependency graph happens to be acyclic, the
algorithm discovers new nodes top-down, performs computation on the way back
up, and runs without ever sending a signal or inserting a node into the workset! In
practice, this option can improve efficiency by a constant factor, but introduces a
risk of blowing up the implicit runtime stack. Either way, this choice has no impact
on the algorithm’s worst-case asymptotic complexity.

In order to complete the description of the algorithm, there only remains to
explain its unique entry point, get . A call to get v is answered immediately if v
occurs in the permanent table. Otherwise, node for v is invoked, and produces a
fresh node, since, at the beginning of a run, the transient table is empty. node for
can have the effect of inserting new nodes into the workset, so we repeatedly invoke
solve until the workset becomes empty. At this point, every node in the transient
table must have stabilized, so the transient table is copied into the permanent table
and cleared. At this point, the least solution at v is known, and can be returned.

3.7 Encapsulating the state of the algorithm

We now justify the Boolean flags alive and inactive. These flags do not participate
in the computation: their only purpose is to rule out certain behaviors of the client.

The flag alive (§3.6) is used to prevent the client from invoking a request function
after this function has become stale, that is, after data.rhs has completed. We set
things up so that the assertion assert !alive fails, at runtime, in such an event.
Although such an invocation could seem harmless, it would allow the client to
observe that two calls to request v can produce distinct results (a phenomenon that
occurs if the current valuation is updated between the two calls).

The flag inactive prevents a re-entrant call by data.rhs to get . Such a call would
break our internal invariant (for instance, we have assumed that, when get is in-
voked, the workset is empty) and cause the algorithm to behave erratically.

Are these runtime checks useful? From a pragmatic point of view, not very much.
They are a safe-guard, but one might argue that the chances for a reasonable client
to trigger them are slim.

Are these runtime checks necessary? If one wishes to statically prove the algo-
rithm correct with respect to a purely functional specification, yes. In our speci-
fication (§2.4), request claims to implement a certain valuation φ. Thus, it must
produce identical results when applied to identical arguments. One might think of
amending the specification to express the rule that “request must not be invoked
after it has become stale”, but there seems to be no way of doing so without intro-
ducing state into the specification. Similarly, there seems to be no way for a purely
functional specification to express the rule that “get must not be invoked while a
call to get is already in progress”. Thus, the code must remain provably correct
even in the face of a client that violates these unspoken rules.

In summary, we claim that these runtime checks are required in order to correctly
encapsulate the internal state of the algorithm, that is, in order to prove the code
partially correct with respect to a purely functional specification.

12 F. Pottier

4 Comments

4.1 A formal proof challenge

This is a functional program that is not a functional program (Longley, 1999), in
the sense that the code is imperative, but strives to present a purely functional
interface. In particular, we have used a “spy function”, request , in order to collect
dynamic dependencies. Longley (1999) studies analogous functions.

We conjecture that the code does satisfy the purely functional specification that
we have sketched (§2.4). However, to formally verify this conjecture remains a
challenge. The proof must be modular, that is, it must reason about the code in
isolation, without knowledge of its clients. It must somehow take advantage of the
runtime checks assert !alive and assert !inactive, which we claimed are necessary.
It must explain why it is sound to pretend that request and get have no side effect,
and—at the same time!—check that request has the side effect of collecting a sound
set of dynamic dependencies.

At present, the author does not know of a solution to this challenge. Powerful
logics for programs that manipulate the heap, such as separation logic (Reynolds,
2002) and Hoare Type Theory (Nanevski et al., 2006; Chlipala et al., 2009), should
provide good starting points. The author’s work on hidden state (Pottier, 2008;
Pottier, 2009b) might provide some further clues.

4.2 Is there a purely functional implementation?

Since the specification of our algorithm is purely functional, one might ask: is it
possible to efficiently implement this specification in a purely functional manner,
say, in Haskell?

In the degenerate case where the dependency graph is guaranteed to be acyclic,
the answer is positive. One creates a collection of mutually recursive thunks, one
per variable, and relies on lazy evaluation to automatically determine a topological
ordering of the dependency graph. This is known as data recursion. It is used, for
instance, by Ford (2002) in a packrat parser.

In the general case, we believe that the answer is negative (but would be interested
to hear otherwise!). Of course, it is possible to define an ascending Kleene chain as
a lazy stream, and to obtain its limit by demanding elements until two consecutive
elements are found to be equal. Kashiwagi and Wise (1991) attempt to exploit this
idea. However, this approach does not seem to yield optimal time complexity.

4.3 Complexity analysis

Theorem The worst-case time complexity of the algorithm, amortized over a se-
quence of runs, is O(Nhc), where N is the sum of the number of variables that have
entered the permanent table and the number of edges carried by these variables in
a static approximation of the dependency graph, h is the height of the partial order
on properties, and c is the cost of evaluating a single right-hand side. ¦
This claim is identical to earlier published results (Vergauwen et al., 1994; Fecht

Functional pearl 13

& Seidl, 1999). In the interests of brevity, the proof is omitted. The parameter
N is bounded by the size of a syntactic representation of the equation system.
The statement of the theorem assumes that M.find and M.add have constant time
complexity; if that is not the case, multiply by an extra factor.

4.4 Related work

Vergauwen, Wauman, and Lewi (1994) give a simple, abstract description of a non-
deterministic chaotic iteration algorithm, which they then refine by introducing a
workset, by collecting dynamic dependencies, and by making the algorithm local.
Our code can be viewed as an implementation of their algorithm.

The algorithm presented here is also closely related to Le Charlier and Van Hen-
tenryck’s top-down algorithm (1992). A technical difference is that our scheduling is
driven by the workset—we use top-down evaluation only as an optional mechanism
for discovering new nodes—whereas Le Charlier and Van Hentenryck rely purely on
top-down evaluation, without a workset. A perhaps deeper difference, and a prob-
lematic aspect of their algorithm, is that they do not achieve proper encapsulation
of state: two consecutive calls to their version of request with identical arguments
can produce different results. We believe that this would make it impossible to
formally argue that their code satisfies a purely functional specification.

Fecht and Seidl (1999) recall the algorithms by Vergauwen et al. (1994) and Le
Charlier and Van Hentenryck (1992), and formulate them in ML style: in particular,
they use a “spy function”. They design a variant of Vergauwen et al.’s algorithm
that performs depth-first discovery of new nodes and whose workset is a priority
queue.

References

Chlipala, Adam, Malecha, Gregory, Morrisett, Greg, Shinnar, Avraham, & Wisnesky,
Ryan. 2009 (Sept.). Effective interactive proofs for higher-order imperative programs.
Pages 79–90 of: ACM International Conference on Functional Programming (ICFP).

Cousot, Patrick, & Cousot, Radhia. 1977 (Jan.). Abstract interpretation: a unified lattice
model for static analysis of programs by construction or approximation of fixpoints.
Pages 238–252 of: ACM Symposium on Principles of Programming Languages (POPL).

Demers, Alan, Horwitz, Susan, & Teitelbaum, Tim. (1987). An efficient general algorithm
for dataflow analysis. Acta Informatica, 24(6), 679–694.

Fecht, Christian, & Seidl, Helmut. (1999). A faster solver for general systems of equations.
Science of Computer Programming, 35(2–3), 137–162.

Ford, Bryan. 2002 (Oct.). Packrat parsing: simple, powerful, lazy, linear time. Pages 36–47
of: ACM International Conference on Functional Programming (ICFP).

Kam, John B., & Ullman, Jeffrey D. (1976). Global data flow analysis and iterative
algorithms. Journal of the ACM, 23(1), 158–171.

Kashiwagi, Yugo, & Wise, David S. 1991 (Apr.). Graph algorithms in a lazy functional
programming language. Technical Report 330. Indiana University.

Kildall, Gary A. 1973 (Oct.). A unified approach to global program optimization. Pages
194–206 of: ACM Symposium on Principles of Programming Languages (POPL).

http://ynot.cs.harvard.edu/papers/icfp09.pdf
http://www.di.ens.fr/~cousot/publications.www/CousotCousot-POPL-77-ACM-p238--252-1977.pdf
http://www.di.ens.fr/~cousot/publications.www/CousotCousot-POPL-77-ACM-p238--252-1977.pdf
http://dx.doi.org/10.1007/BF00282621
http://dx.doi.org/10.1007/BF00282621
http://www2.in.tum.de/~seidl/papers/final-solver.ps.gz
http://www.brynosaurus.com/pub/lang/packrat-icfp02.pdf
http://doi.acm.org/10.1145/321921.321938
http://doi.acm.org/10.1145/321921.321938
http://www.cs.indiana.edu/pub/techreports/TR330.pdf
http://www.cs.indiana.edu/pub/techreports/TR330.pdf
http://doi.acm.org/10.1145/512927.512945

14 F. Pottier

Le Charlier, Baudouin, & Van Hentenryck, Pascal. 1992 (May). A universal top-down
fixpoint algorithm. Technical Report CS-92-25. Brown University.

Liu, Xinxin, & Smolka, Scott A. (1998). Simple linear-time algorithms for minimal fixed
points. Pages 53–66 of: International Colloquium on Automata, Languages and Pro-
gramming. Lecture Notes in Computer Science, vol. 1443. Springer.

Longley, John. 1999 (Sept.). When is a functional program not a functional program?
Pages 1–7 of: ACM International Conference on Functional Programming (ICFP).

Nanevski, Aleksandar, Morrisett, Greg, & Birkedal, Lars. 2006 (Sept.). Polymorphism
and separation in Hoare type theory. Pages 62–73 of: ACM International Conference
on Functional Programming (ICFP).

Pottier, François. 2008 (June). Hiding local state in direct style: a higher-order anti-frame
rule. Pages 331–340 of: IEEE Symposium on Logic in Computer Science (LICS).

Pottier, François. 2009a (Apr.). Fix. See http://gallium.inria.fr/~fpottier/fix/.

Pottier, François. 2009b (July). Generalizing the higher-order frame and anti-frame rules.
Unpublished.

Reynolds, John C. (2002). Separation logic: A logic for shared mutable data structures.
Pages 55–74 of: IEEE Symposium on Logic in Computer Science (LICS).

Régis-Gianas, Yann, & Pottier, François. (2008). A Hoare logic for call-by-value functional
programs. Pages 305–335 of: International Conference on Mathematics of Program
Construction (MPC). Lecture Notes in Computer Science, vol. 5133. Springer.

Vergauwen, Bart, Wauman, J., & Lewi, Johan. (1994). Efficient fixpoint computation.
Pages 314–328 of: Static Analysis Symposium (SAS). Lecture Notes in Computer Sci-
ence, vol. 864. Springer.

ftp://ftp.cs.brown.edu/pub/techreports/92/cs92-25.ps.gz
ftp://ftp.cs.brown.edu/pub/techreports/92/cs92-25.ps.gz
http://dx.doi.org/10.1007/BFb0055040
http://dx.doi.org/10.1007/BFb0055040
http://doi.acm.org/10.1145/317636.317775
http://www.eecs.harvard.edu/~aleks/papers/hoarelogic/icfp06.pdf
http://www.eecs.harvard.edu/~aleks/papers/hoarelogic/icfp06.pdf
http://gallium.inria.fr/~fpottier/publis/fpottier-antiframe-2008.pdf
http://gallium.inria.fr/~fpottier/publis/fpottier-antiframe-2008.pdf
http://gallium.inria.fr/~fpottier/fix/
http://gallium.inria.fr/~fpottier/fix/
http://gallium.inria.fr/~fpottier/publis/fpottier-gaf-2009.pdf
ftp://ftp.cs.cmu.edu/user/jcr/seplogic.ps.gz
http://dx.doi.org/10.1007/3-540-58485-4_49

	Introduction
	Interface
	Maps
	Properties
	The functor Make
	Specification
	How the algorithm is used

	Implementation
	The dynamic dependency graph
	Node data
	The workset
	Subjects, observers, signals
	Tables
	The core algorithm
	Encapsulating the state of the algorithm

	Comments
	A formal proof challenge
	Is there a purely functional implementation?
	Complexity analysis
	Related work

	References

