
Depth-First Search and Strong Connectivity in Coq

François Pottier

INRIA

Abstract

Using Coq, we mechanize Wegener’s proof of Kosaraju’s linear-time algorithm for computing
the strongly connected components of a directed graph. Furthermore, also in Coq, we define an
executable and terminating depth-first search algorithm.

1. Introduction

The strongly connected components of a directed graph (V, E) can be computed in linear time. This
striking fact, first established by Tarjan [7], is one of the fundamental results of algorithmic graph
theory. Tarjan’s algorithm is taught in many introductory algorithms courses. Unfortunately, this
algorithm is rather difficult to explain, or to reconstruct, or to prove correct, in front of an audience
composed of undergraduate students.

Instead, several textbooks [1, 2] present another linear-time algorithm, attributed to Kosaraju
(unpublished) and Sharir [6]. This algorithm consists in one depth-first traversal of the graph E,
followed with one depth-first traversal of the reverse graph Ē. The first traversal influences the
second, as follows: the order in which the vertices are examined during the second traversal is the
reverse post-order of the forest f1 produced by the first traversal. The forest f2 produced by the second
traversal has the property that every toplevel tree forms a component. (For the sake of brevity, from
here on, we write “component” for “strongly connected component”.)

As should be clear from this three-line description, Kosaraju’s algorithm is significantly simpler
than Tarjan’s. Although the textbook proofs of this algorithm are still somewhat complex, Wegener [8]
presents a beautiful reconstruction of the algorithm, which can be considered an explanation and a
proof (albeit an informal one). It can be summarized as a sequence of remarks, or insights:

• A depth-first traversal of a graph produces a DFS forest (Figure 1). If one draws its trees from
left to right and from least to most recently discovered, then such a forest has the property that
there can be no graph edges “towards the right”. That is, there cannot be a graph edge from a
tree into some younger tree (Figure 2).

• Assume, as in our description of the algorithm, that a depth-first traversal of the graph E
produces the forest f1 (H1). Then, the previous remark implies that every component of E is
contained within some tree of f1.

• There is one specific component that can be easily found. Assuming the graph E and forest f1

are non-empty, let r be the root of the rightmost tree in f1 (Figure 3). By exploiting the previous
remarks, it is not difficult to see that scc(r) must be Ē?(r). That is, the component of r can be
found by traversing the reverse graph Ē, with starting point r.

• Assume, as in our description of the algorithm, that a depth-first traversal of the reverse graph Ē
produces the DFS forest f2 (H2), and that the sequence of the roots of f2 respects the reverse
post-order of the forest f1 (H3). Then, r must be the vertex that appears first in the reverse

1

Pottier

post-order of the forest f1, hence must be the root of the first tree in the forest f2. By the
previous remark, this implies that the first tree in the forest f2 is scc(r) (Figure 3). Thus, this
tree is a component.

• The last key insight is that the component scc(r) must form a prefix of the forest f1 (Figure 3).
Thus, one may remove this component (by thought) from the graph E and forests f1 and f2,
yielding a graph E′ and two forests f ′1 and f ′2 which (it turns out) still satisfy the hypotheses
H1, H2 and H3. One can then repeat the whole argument, as many times as necessary, to
conclude that every toplevel tree in the forest f2 must be a component.

One attractive feature of this proof is that, in contrast with Cormen et al.’s [2], it never mentions
the “times” at which vertices are visited. Instead, it is expressed purely in terms of graphs, forests,
and their structural properties. This gives it a more “declarative”, as opposed to “imperative”, flavor.

In this paper, we make the following contributions:

1. We confirm the validity of Wegener’s proof, as well as the elegance of its overall architecture, by
mechanizing it in Coq. We find that it is indeed possible to structure the proof in the manner
broadly suggested by Wegener. This puts the proof on a firm footing, and could be useful to
someone who wishes to teach this material.

2. We define in Coq an executable and terminating depth-first search algorithm, which, given a
(runtime representation of) a graph, constructs a DFS forest. The algorithm gives rise, by
extraction, to satisfactory OCaml code for depth-first search. We report on our experience
developing this code, and suggest several ways of improving it.

In the paper, we elide the details of our machine-checked version of Wegener’s proof. We give only
an outline of the proof, insofar as a (formalist!) teacher might explain it. We explicitly state several
definitions and lemmas, but omit or inline a number of “trivial” auxiliary lemmas. We accompany
each lemma with a hand-written proof, formulated in a clear but informal style, and collect these
proofs in an appendix.

The paper is organized as follows. We define DFS forests and study their properties (§2). Then,
we prove that Kosaraju’s algorithm is correct: that is, the hypotheses H1, H2 and H3 above imply
that every toplevel tree in the forest f2 is a component of the graph E (§3). We develop an executable
depth-first search algorithm (§4). We briefly review the related work (§5) and conclude.

2. Depth-First Search

2.1. Sets and relations

Throughout the paper, we fix a type V of vertices. We let r, v and w range over vertices.
We let V and W (in §2.1) as well as i, m, o, and M (further on in the paper) range over sets

of vertices. (A set of vertices is represented in Coq as a predicate of type V → Prop.) We use the
standard set-theoretic operations (union, intersection, inclusion, etc.). In particular, we write ¬V for
the complement of the set V .

A (directed) graph E is a binary relation over vertices. (Such a relation is represented in Coq as
a predicate of type V → V → Prop.) We write v E w to indicate that the vertices v and w are related
by E, i.e., there is an edge from v to w.

We write E(V) for the image of the set V under the relation E.
The assertion E(V) ⊆ W means that every edge whose source vertex lies in V has a destination

vertex in the set W : we say V goes into W . In particular, E(V) ⊆ V means that the set V is
closed: every edge that starts in V ends in V , or in other words, no edge leaves V .

2

Depth-First Search and Strong Connectivity in Coq

The assertion W ⊆ E(V) means that every member of W is the target of some edge whose source
vertex lies in V : we say V covers W .

We write E? for the reflexive, transitive closure of a relation E. If v E w indicates the existence
of an edge from v to w, then v E? w indicates the existence of a path from v to w. The closure of a
set of vertices V is the set E?(V). It is the set of all vertices that can be reached from V by following
some path in the graph E.

The assertion W ⊆ E?(V) means that every vertex in W can be reached from some vertex in V
by following some path: we say V reaches W .

The reverse graph Ē is defined by letting v Ē w hold if and only if wE v holds. The strong
connectivity relation sccE , or just scc, is defined as the intersection of E? and Ē?. Thus, v scc w
holds if and only if there is a path from v to w and back. The component scc(v) of the vertex v is
just the image of the vertex v under the relation scc.

2.2. Forests

We let f , ~v and ~w range over forests, which are inductively defined by f,~v, ~w ::= ε | w
~w :: ~v. That

is, a forest is either the empty forest ε, which consists of zero trees; or a non-empty forest (Figure 1),
which consists of one tree (whose root is the vertex w and whose children form the forest ~w) followed
by zero or more trees (which form the forest ~v).

By abuse of notation, we sometimes write w
~w for a “tree”, i.e., for the forest w

~w :: ε.
Although we define forests as a stand-alone inductive type, one can think of a forest as a list of

trees. This is why, in the paper, we choose to write w
~w :: ~v for a non-empty forest. This is an abuse of

notation, as we also use the double-colon notation for prepending an element in front of a list, as in
r ::~r. By a similar abuse of notation, we write ε for both the empty list and the empty forest.

A few standard functions over lists must be redefined for forests. In particular, the concatenation
of two forests ~v and ~w is defined in the same manner as the concatenation of two lists. In the paper,
we write ++ both for list concatenation and for forest concatenation.

The roots and support of a forest are sets of vertices, defined as follows:

roots(ε) = ∅ support(ε) = ∅
roots(w

~w :: ~v) = {w} ∪ roots(~v) support(w
~w :: ~v) = {w} ∪ support(~w) ∪ support(~v)

The preorder and postorder of a forest are lists of vertices, defined as follows:

pre(ε) = ε post(ε) = ε
pre(w

~w :: ~v) = w :: pre(~w) ++ pre(~v) post(w
~w :: ~v) = post(~w) ++w :: post(~v)

We write rev(~r) for the reverse of the list ~r. Thus, the reverse postorder of a forest ~v is rev(post(~v)).

2.3. DFS Forests

We now define the notion of a “DFS forest”. This notion takes the form of an inductive predicate, dfs
(§2.3.1), whose properties we study (§2.3.2–§2.3.5). Throughout §2.3, we fix a graph E.

2.3.1. Definition

In the following, i and o range over sets of vertices. They represent the sets of vertices that are marked
at the beginning and at the end of a (partial) depth-first search, respectively. The mnemonic is as
follows: i stands for “input” and o stands for “output”. We also let m range over sets of vertices; it
usually denotes the vertices that are marked somewhere in the “middle” of a depth-first search.

3

Pottier

Figure 1: A non-empty forest w
~w :: ~v. The

sub-forest ~w represents the children of the
vertex w. The sub-forest ~v represents the
neighbors of the tree w

~w .

w

�w �v

Figure 2: A DFS forest. The solid edges
are examples of edges that may exist in the
graph. The dashed, crossed-out edge is an
example of an edge that cannot exist in the
graph. The set of vertices on the left-hand
side of every dashed boundary is closed.

Figure 3: The principle of Kosaraju’s
algorithm. f1 is a DFS forest for the
graph E. f2 is a DFS forest for the reverse
graph Ē. The vertex r is the root of the
last tree in f1 and the root of the first tree
in f2. The component scc(r) forms a prefix
of the last tree in f1 and is exactly the first
tree in f2.

f2

r

scc(r)

�v2
r

�w2

r

f1

scc(r)

r

�w1
�v1

�w�
1

4

Depth-First Search and Strong Connectivity in Coq

The predicate dfs (i) ~v (o) means that ~v is a DFS forest with respect to the sets i and o and
(implicitly) with respect to the graph E. It is inductively defined by the two rules that follow. The
pseudo-rule on the right-hand side is an informal reading of DFS-NonEmpty.

DFS-Empty

dfs (i) ε (i)

DFS-NonEmpty
w 6∈ i

dfs ({w} ∪ i) ~w (m)
roots(~w) ⊆ E({w})

E({w}) ⊆ m
dfs (m) ~v (o)

dfs (i)
w

~w
:: ~v (o)

w was not initially marked
after marking w, the DFS forest ~w was built

every root of ~w is a successor of w
every successor of w was marked at this point

then, the DFS forest ~v was built

the DFS forest
w

~w
:: ~v was built

The predicate dfs (i) ~v (o) means that a depth-first search, beginning in a state where the marked
vertices are i, can construct the forest ~v and end in a state where the marked vertices are o. Let us
stress that this is not an executable description of the depth-first search algorithm. It is a declarative
specification, which should be thought of as a property of the forest ~v.

If one attempted to read the definition of dfs (i) ~v (o) as an executable specification, where i is an
input parameter and ~v and o are output parameters, then one would find that this definition describes
a non-deterministic process. Where the search should begin is not specified: which are the roots? in
which order should they be visited? Technically, in DFS-NonEmpty, the first root w can be chosen in
an arbitrary manner, as long as it is not marked already (premise #1). For the same reason, one level
down, the order in which the as-yet-unmarked successors of w are visited is not specified; the second
premise of DFS-NonEmpty does not impose a particular order. Where the search should stop is not
specified either: at the top level, DFS-Empty can always be used to “stop early”. In other words, a
DFS forest is not required to cover the whole graph: it is perfectly acceptable for a DFS forest to
cover only part of the graph.

We believe that, by defining dfs as a predicate, as opposed to a deterministic and terminating
algorithm, we facilitate reasoning about the properties of DFS forests, independently of the effective
method by which they are built.

Premises #2 and #5 in DFS-NonEmpty require the sub-forests ~w and ~v to be DFS forests. They
also take care of augmenting and threading the set of marked vertices. The vertex w is marked
immediately, that is, before constructing the sub-forest ~w. After constructing this sub-forest, the
marked vertices are m, and after constructing the sub-forest ~v, they are o.

Premises #3 and #4 are used to control the sub-forest ~w that is constructed in premise #2.
Premise #3 requires that the roots of ~w be successors of w. This means that every forest edge
must be a graph edge, or in other words, that a DFS forest with respect to E is a sub-graph of E.
Premise #4 states that, after ~w has been constructed, every successor of w must be marked. In other
words, as long as there are unmarked successors of w, they must be examined; it is not permitted to
stop early and declare that w has been fully processed.

2.3.2. Basic properties

DFS forests can be concatenated and split, as follows.

Lemma 1 (Concatenation; splitting) dfs (i) ~v (m) and dfs (m) ~w (o) imply dfs (i) ~v++ ~w (o).
Conversely, dfs (i) ~v++ ~w (o) implies dfs (i) ~v (m) and dfs (m) ~w (o) for some set of vertices m. �

The set of marked vertices grows with time. In other words, a vertex once marked remains marked.

Lemma 2 (Monotonicity) dfs (i) ~v (o) implies i ⊆ o. �

By exploiting this property, we are able to establish a more precise statement:

5

Pottier

Lemma 3 (Marking) If dfs (i) ~v (o) holds, then the sets i and support(~v) are disjoint, and the set o
is their union. �

In light of the previous result, we note that dfs could have been defined as a predicate of two
parameters i and ~v, and the set o could then have been computed as i ∪ support(~v). The choice
between these presentations seems to be a matter of taste.

As a corollary of the previous results, we find that a vertex cannot appear twice in a DFS forest.

Lemma 4 (Unique visit) dfs (i) ~w++~v (o) implies support(~v) ⊆ ¬support(~w). �

2.3.3. Sound discovery

Quite obviously, because every edge in a DFS forest is a graph edge, the support of a DFS forest
is reachable (via paths in the graph) from its roots. In other words, “only reachable vertices are
discovered”.

Lemma 5 (Sound discovery) dfs (i) ~v (o) implies support(~v) ⊆ E?(roots(~v)). �

2.3.4. Complete discovery

We now wish to prove the converse property, that is, “all reachable vertices are discovered”. We do so
in the following three lemmas. We begin with a simple statement: if ~v is a DFS forest, then, at the
point in time where ~v has just been built, every successor of a vertex in ~v is marked.

Lemma 6 (Every successor is marked) dfs (i) ~v (o) implies E(support(~v)) ⊆ o. �

This allows us to derive a (necessary and) sufficient condition for the set o to be closed.

Lemma 7 dfs (i) ~v (o) and E(i) ⊆ o imply E(o) ⊆ o. �

As a special case of the previous lemma, we find that closedness is an invariant: if i is closed, then
o is closed as well.

Lemma 8 (Complete discovery) dfs (i) ~v (o) and E(i) ⊆ i imply E(o) ⊆ o. �

Naturally, the empty set is closed, so if one begins with an empty set of marked vertices, then the
above lemma guarantees that, after each new toplevel DFS tree is produced, the set of marked vertices
is closed (Figure 2).

The fact that o is closed means that, at the end, every vertex that is reachable from a marked
vertex must be marked. Since at the end the roots of the forest ~v are marked (by Lemma 3, roots(~v)
is a subset of o), there follows that every vertex that is reachable from some root is marked, that is,
E?(roots(~v)) ⊆ o. Thus, we have the desired property of “complete discovery”. The formulation of
Lemma 8 as the preservation of a closedness invariant was new to the author, and seems pleasing.

2.3.5. DFS forests and strongly connected components

Assume w is the root of a toplevel tree w
~w in a DFS forest. If one starts at w and follows a path in

the graph E, then one must remain in the tree w
~w or in the trees towards the left (i.e., in i). A look

at Figure 2 should reveal that this makes intuitive sense: there is no way to cross a dashed boundary
towards the right.

Lemma 9 (Going left) dfs (i) w
~w :: ~v (o) and E(i) ⊆ i imply E?({w}) ⊆ i ∪ support(w

~w). �

6

Depth-First Search and Strong Connectivity in Coq

Symmetrically, if one starts at w and follows a path in the reverse graph Ē, then one must remain
in the tree w

~w or in the trees towards the right (i.e., in ~v).

Lemma 10 (Going right) dfs (i) w
~w :: ~v (V) and E(i) ⊆ i imply Ē?({w}) ⊆ support(w

~w :: ~v). �

A slightly subtle detail in the previous statement is our use of V, the set of all vertices, as opposed
to an arbitrary set o. This ensures that the forest ~v represents all of the trees towards the right.

By intersection of the previous two results, one finds that, if w is the root of a toplevel tree w
~w in

a DFS forest, then the component of w must be contained in this tree.

Lemma 11 (Every component is contained within some tree) dfs (i) w
~w :: ~v (V) and E(i) ⊆ i

imply scc(w) ⊆ support(w
~w). �

(The last three lemmas could easily be generalized to account for the case where w is an arbitrary
vertex in the tree, not necessarily its root.)

Now, following Wegener’s insight, let us focus on the last tree w
~w in a DFS forest ~v++ w

~w . As a
consequence of the previous results, we find that the component of w must be Ē?({w}), that is, the
set of vertices that are reachable from w in the reverse graph Ē.

Lemma 12 (Last tree) dfs (i) ~v++ w
~w (V) and E(i) ⊆ i imply scc(w) = Ē?({w}). �

We also need a little fact about the first tree w
~w in a DFS forest w

~w :: ~v. Quite clearly, the set of
vertices that are reachable from the root w is the whole tree w

~w , and nothing more. One could state
this lemma under the assumption that i is empty, but we need a slightly more general statement,
where i may be non-empty, but cannot interfere, i.e., both i and ¬i are closed. This lemma is used in
the proof of our main result (Lemma 17), where it is applied to the reverse graph.

Lemma 13 (First tree) dfs (i) w
~w :: ~v (o) and

{
E(i) ⊆ i
E(¬i) ⊆ ¬i imply E?({w}) = support(w

~w). �

3. Strong Connectivity

In the following, we define the predicate orders (§3.1), which appears in our specification of Kosaraju’s
algorithm, in the hypothesis H3 (see §1). Then, we define a suffix ordering on forests and study some
of its properties (§3.2). Finally, we present the proof of Kosaraju’s algorithm (§3.3).

3.1. Root Ordering

In the following, r stands for a vertex, and ~r stands for a list of vertices. The predicate ~r orders ~v is
inductively defined as follows:

Ordered-Nil

ε orders ε

Ordered-Skip
r 6∈ support(~v)
~r orders ~v

r ::~r orders ~v

Ordered-Root
~r orders ~v

r ::~r orders
r

~w
:: ~v

In the absence of the premise r 6∈ support(~v) in Ordered-Skip, the predicate ~r orders ~v would mean
exactly that the roots of the forest ~v form a subsequence of the list ~r. Due to this premise, however,
the predicate ~r orders ~v is more restrictive. It means intuitively that a depth-first search algorithm
which (as part of its toplevel loop) examines all vertices in the order prescribed by ~r can (plausibly)
produce the forest ~v. Whenever the algorithm examines a new vertex r, this vertex either becomes
the root of the next toplevel tree, or is skipped. The latter case occurs if and only if r is already
marked, i.e., if and only if r is not part of the forest ~v that remains to be constructed. Technically,
the premise r 6∈ support(~v) in Ordered-Skip is exploited in the proof of Lemma 17.

7

Pottier

3.2. Suffix Ordering

Throughout §3.2, let us fix a set M of so-called “masked” vertices. We define a predicate ~v ≥M ~v′

which means that the set M forms a prefix of the forest ~v and that removing these vertices yields the
forest ~v′. (This implies that ~v′ is a suffix of ~v.)

Filter-Empty

ε ≥M ε

Filter-Masked
w ∈M ~w ≥M ~w′ ~v ≥M ~v′

w

~w
:: ~v ≥M ~w′ ++~v′

Filter-Visible
w 6∈M support(~w) ⊆ ¬M ~v ≥M ~v′

w

~w
:: ~v ≥M

w

~w
:: ~v′

If ~v is a DFS forest, and if we remove a prefix of it, then the remaining forest ~v′ is still a DFS
forest. This is stated as follows. We write E′ for the graph E deprived of all edges whose source or
destination lies in M . We note that the predicate dfs is now explicitly parameterized with a graph.

Lemma 14 (DFS Surgery) dfsE (i) ~w (o) and ~w ≥M ~w′ imply dfsE′ (i ∪M) ~w′ (o ∪M). �

Note that, if M ⊆ i holds, then the conclusion of this lemma boils down to dfsE′ (i) ~w′ (o). This
is exploited in the proof of Lemma 17.

Now and until the end of §3.2, let us fix a vertex r, and assume that the set of masked vertices is
exactly the component of r, i.e., M = scc(r).

If every root of a DFS forest ~v is reachable from r, then scc(r) must form a prefix of ~v.

Lemma 15 dfsE (i) ~v (o) and support(~v) ⊆ E?({r}) imply ~v ≥M ~v′ for some forest ~v′. �

As a corollary, if the distinguished vertex r is the root of the last tree in a DFS forest, then the
component of r is a prefix of the last tree.

Lemma 16 dfsE (i) ~v++ r
~w (V) and E(i) ⊆ i imply ~v++ r

~w ≥M ~v++ ~w′ for some ~w′. �

3.3. Proof of Kosaraju’s Algorithm

Let us say that a forest ~v is an SCC forest for some graph E if and only if every toplevel tree in ~v
is a component of E. The main result of this paper is the following lemma:

Lemma 17 (Specification and soundness of Kosaraju’s algorithm) Let (V, E) be a directed
graph. Assume that the forest f1 is produced by a complete depth-first traversal of the graph:

dfsE (∅) f1 (V)

Assume that the forest f2 is produced by a complete depth-first traversal of the reverse graph:

dfsĒ (∅) f2 (V)

Finally, assume that f2 obeys the reverse postorder of f1:

rev(post(f1)) orders f2

Then, f2 is an SCC forest for the graph E. �

4. A Depth-First Search Algorithm

We now describe an executable depth-first search algorithm, defined in Coq. This is exploratory work,
which could be improved in several ways:

8

Depth-First Search and Strong Connectivity in Coq

• We use a recursive formulation, because it seems more elegant. Yet, it occurred to us that, after
the code is extracted to OCaml, this is likely to cause stack overflows when dealing with large
graphs. A tail-recursive formulation, using an explicit stack, would be more robust.

• Building a proof of termination into the Coq definition of the algorithm is slightly tricky. The
approach followed here leads to clean OCaml code, but causes us to jump through some hoops
that involve dependent types and programming with tactics. A Coq expert would certainly find
room for improvement here. More fundamentally, perhaps a tail-recursive formulation would
not run into this issue (see §4.2).

• Our algorithm maintains a state of a fixed type, namely a pair of a set of marked vertices and a
forest. Although this is good enough for some applications, including our intended application
to Kosaraju’s algorithm, it would be preferable to have a generic algorithm, in the style of
Neumann’s [4], which we discuss further on (§5).

4.1. Assumptions

When writing executable code in Coq, one must distinguish between mathematical objects (vertices;
graphs; sets of vertices) and their runtime representations. A mathematical set of vertices, for instance,
is just a predicate of type V → Prop (§2.1), whereas the runtime representation of a set of vertices
could be, say, a balanced binary search tree, provided by Coq’s FSets library. Because we do not wish
to impose a particular runtime representation, our code is parametric in the runtime representations
of (1) graphs and (2) sets of vertices. We take a shortcut and assume that “mathematical vertices”
and “runtime vertices” are the same thing; ideally, this assumption should be removed.

We assume a type V of vertices, and assume that V is finite. This assumption is exploited in the
termination argument.

We assume a mathematical graph E. We assume a runtime representation of this graph, in the
form of a function successor, which maps a vertex v to a higher-order iterator over the successors
of v. Thus, successor has type V -> FOREACH V, where FOREACH V is a record type with one field,
foreach, of type forall A, A -> (A -> V -> A) -> A. We assume that the graph E and its runtime
representation successor are related, as follows. We require the property:

forall v, FOREACH_SET_SPEC (successor v) (image E (singleton v))

which means that invoking foreach (successor v) a f is equivalent to invoking fold_left f vs a,
for some list of vertices vs whose members are the successors of v in the graph E. It may be worth
noting that this specification allows a single successor to have multiple occurrences in the list vs. This
flexibility is useful in applications where repeated edges may arise.

We assume a runtime representation of sets of vertices, equipped with three operations: the empty
set, marking a vertex, and testing whether a vertex is marked. This leads to a record type with
eight components, namely the four that we just listed, plus four assumptions that connect these four
runtime objects with their mathematical counterparts.

Record SET (V : Type) := MkSET {
repr : Type;
meaning : repr -> (V -> Prop);
void : repr;
mark : V -> repr -> repr;
marked : V -> repr -> bool;
... // 3 more hypotheses about void , mark , marked

}.

9

Pottier

4.2. A Recursive Function

The type state is defined as an abbreviation for repr * forest V. The state of the algorithm is a
pair of the set of marked vertices and the forest built so far.

Because V is finite, the strict superset ordering on V -> Prop is well-founded. Via the meaning
function, this ordering can be transported to the type repr of runtime sets of vertices, and from there,
to the type state.

The recursive function visitf_dep is defined by well-founded recursion over this ordering. Ideally,
we would like this function to have type state -> V -> state, as it visits one vertex and updates the
current state. Unfortunately, a moment’s thought reveals that this cannot work. When we perform a
recursive call, we must prove that there are strictly more marked vertices now than at entry into the
function. Because we perform several recursive calls in a sequence (as we iterate over the successors),
we must establish and exploit the fact that a recursive call causes the set of marked vertices to grow
(non-strictly). This leads us to build this information into the type of visitf_dep, which becomes a
dependent type:

Definition visitf_dep:
forall s0 : state , V -> { s1 | lift le s0 s1 }.

Proof.
eapply (Fix (...) (...)).
...

Defined.

The postcondition lift le s0 s1 means that there are at least as many marked vertices in the final
state s1 as in the initial state s0. The code is written in the form of a proof script, which is somewhat
unnatural but tolerable. Perhaps Coq’s Program mode would help avoid this.

It seems that we are paying for our choice of a recursive formulation. In a tail-recursive formulation,
with an explicit stack, we would have to exhibit a more complex well-founded ordering, but we would
not need to assign the function a dependent type, as the termination argument would not require a
comparison of the pre- and post-states.

4.3. A Specification

In order to prove that visitf_dep is correct, we must provide a specification for it. More generally, we
need a specification for the inner loop of visitf_dep, which invokes visitf_dep on every successor.
This leads us to defining a predicate visitf_spec s vs s’, where s and s’ are the pre- and post-
states, and vs is a set of vertices that must be visited.

Definition visitf_spec (s : state) (vs : V -> Prop) (s’ : state) :=
let (marks , forest) := s in
let (marks ’, forest ’) := s’ in
(* 0 *) le marks marks ’ /\
(* 1 *) subset vs (meaning marks ’) /\
(* 2 *) subset (roots forest ’) (union vs (roots forest)) /\
(* 3 *) forall init ,

dfs E init (meaning marks) (revf forest) ->
dfs E init (meaning marks ’) (revf forest ’).

Conjunct #0 states that at least as many vertices are marked at the end as at the start. Conjunct #1
states that every vertex in vs is marked at the end. Conjunct #2 states that every root of the forest
at the end either was already a root at the beginning or is a member of vs. Conjunct #3 states that,
if the forest was DFS at the beginning, then it still is DFS at the end. For efficiency reasons, we build

10

Depth-First Search and Strong Connectivity in Coq

recursively-reversed forests, where younger trees appear first; hence the use of the auxiliary function
revf, whose definition we omit.

We prove three key properties of visitf_spec. First, if the vertices vs are already marked in the
initial state s, then the specification is satisfied by doing nothing, that is, visitf_spec s vs s holds.
Second, to visit the union of the sets vs and ws, it suffices to visit each of these sets in succession, that
is, visitf_spec s0 vs s1 and visitf_spec s1 ws s2 imply visitf_spec s0 (union vs ws) s2.
Third, in order to visit a single unmarked vertex w, it suffices to (a) mark w; (b) visit its successors,
yielding a sub-forest ws; (c) prepend the tree formed by w and ws in front of the current forest. (We
omit the Coq version of this statement.)

A pleasant aspect is that these properties are proved without any reference to visitf_dep (§4.2).
They represent the essence of the argument that “recursive depth-first search is correct”, without any
reference to actual code.

4.4. Wrapping Up

There remains to: (1) prove that the function visitf_dep satisfies the specification visitf_spec and
(2) re-package the algorithm as a function visitf of non-dependent type state -> V -> state.

Item (1) is roughly the process of extracting proof obligations out of the code of §4.2 and using the
three key properties of §4.3 to check that these obligations are met. Using a tool such as Why3, this
would come almost for free. In Coq, the process is fairly difficult: the inner loop requires an auxiliary
lemma, which is proved by induction; and the fact that visitf_dep has a dependent type complicates
everything. Item (2) is straightforward.

In the end, we find that visitf is correct in the following sense:

forall s v s’,
visitf s v = s’ ->
visitf_spec s (singleton v) s’.

A similar result is proved about fold_left visitf, which visits a list of vertices in succession.
The OCaml code obtained by extraction for visitf_dep is 11 lines and is identical to what an

OCaml programmer would write by hand.

5. Related Work

Neumann [4] presents an executable DFS algorithm, expressed in Isabelle/HOL, in iterative style.
The algorithm is generic: it is parameterized by a state, whose type is user-defined, and by three
functions that allow the user to specify how the state should be altered when a vertex is first
discovered, re-discovered, and fully processed. An abortion mechanism is built into the algorithm. The
algorithm assigns a pair of timestamps to every vertex. The properties satisfied by these timestamps
are established, in the style of Cormen et al. [2], and the algorithm is proved correct, in the sense
that it discovers all (and only) reachable vertices. (This seems to be a limited specification, which
says nothing of the user-defined state computed by the algorithm.) On top of this generic algorithm,
Neumann develops several variants of Nested DFS, an algorithm that detects the existence of a cycle
that contains at least one “accepting” vertex, and proves their correctness. In its present state, our
work in §4 is more modest.

Lammich [3] presents an Isabelle/HOL formalization of Gabow’s algorithm for computing the
strongly connected components. He extends it to an algorithm for the emptiness check of generalized
Büchi automata: this requires checking (on the fly) whether there exists a reachable, non-trivial
component that contains at least one vertex of every acceptance class. From a pedagogical point of

11

Pottier

view, Kosaraju’s algorithm seems simpler and more modular than Gabow’s, as it is built on top of
depth-first search. Presumably, Lammich’s choice of Gabow’s algorithm is motivated by performance
considerations, although this is not discussed.

6. Conclusion

In summary, the main contributions of this paper are (1) a machine-checked version of Wegener’s proof
of Kosaraju’s algorithm, together with a hand-written account (§2, §3) and (2) a clean separation
between the mathematics of depth-first search (§2, §3) and its Coq implementation (§4).

Within §4, we have isolated the specification visitf_spec and established several of its properties
independently of the code of visitf_dep. This separates the areas where Coq shines (mathematical
reasoning) and those where it seems clumsy (defining general recursive functions).

The Coq code is available online [5]. The material in §2 and §3 represents about 1000 non-blank,
non-comment lines, not counting a library of basic facts and tactics about sets and relations. The
algorithm of §4 represents about 300 non-blank, non-comment lines.

There are many directions for future work. (1) Prove a stronger result about our depth-first
search algorithm: show that the call fold_left visitf rs (void, Empty _) produces a forest vs
such that the predicate rs orders vs (§3.1) holds. (2) Define and verify an executable version of
Kosaraju’s algorithm. This requires (1) above. (3) Study a tail-recursive version of the depth-first
search algorithm. (4) Define a generic depth-first search algorithm, and apply it to a number of simple
problems, such as cycle detection, topological sort, graph reversal, etc.

In the long run, we would like to see Coq equipped with a library of elementary graph algorithms,
in the style of ocamlgraph. They would be valuable building blocks in the development of future
verified applications.

References

[1] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. Data Structures and Algorithms. Addison-Wesley,
1983.

[2] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms (Third
Edition). MIT Press, 2009.

[3] P. Lammich. Verified efficient implementation of Gabow’s strongly connected component
algorithm. volume 8558, pages 325–340, July 2014.

[4] R. Neumann. A framework for verified depth-first algorithms. In ATx/WInG: Joint Proceedings
of the Workshops on Automated Theory eXploration and on Invariant Generation, volume 17 of
EPiC Series, pages 36–45. EasyChair, June 2012.

[5] F. Pottier. Depth-first search and strong connectivity in Coq. http://gallium.inria.fr/
~fpottier/dfs/dfs.tar.gz, Sept. 2014.

[6] M. Sharir. A strong connectivity algorithm and its applications to data flow analysis. Computers
and Mathematics with Applications, 7(1):67–72, 1981.

[7] R. Tarjan. Depth-first search and linear graph algorithms. SIAM Journal on Computing, 1(2):146–
160, June 1972.

[8] I. Wegener. A simplified correctness proof for a well-known algorithm computing strongly
connected components. Information Processing Letters, 83(1):17–19, 2002.

12

http://mitpress.mit.edu/catalog/item/ default.asp?ttype=2&tid=11866
http://mitpress.mit.edu/catalog/item/ default.asp?ttype=2&tid=11866
http://www21.in.tum.de/~lammich/pub/gabow_scc.pdf
http://www21.in.tum.de/~lammich/pub/gabow_scc.pdf
http://www.easychair.org/publications/?page=722211206
http://gallium.inria.fr/~fpottier/dfs/dfs.tar.gz
http://gallium.inria.fr/~fpottier/dfs/dfs.tar.gz
http://dx.doi.org/10.1016/0898-1221(81)90008-0
http://epubs.siam.org/doi/abs/10.1137/0201010
http://ls2-www.cs.uni-dortmund.de/~wegener/papers/connected.pdf
http://ls2-www.cs.uni-dortmund.de/~wegener/papers/connected.pdf

Depth-First Search and Strong Connectivity in Coq

7. Proofs

Proof of Lemma 1. By immediate inductions. �

Proof of Lemma 2. By an immediate induction. �

Proof of Lemma 3. By immediate inductions, using Lemma 2. �

Proof of Lemma 4. By Lemmas 1 and 3. �

Proof of Lemma 5. By induction over the dfs hypothesis. �

Proof of Lemma 6. By induction over the dfs assumption. The base case is immediate; the
inductive case relies on Lemma 2. �

Proof of Lemma 7. By Lemma 3, o is i ∪ support(~v). Thus, in order to establish the goal, it is
(necessary and) sufficient to prove separately E(i) ⊆ o and E(support(~v)) ⊆ o. The former holds by
hypothesis; the latter follows from Lemma 6. �

Proof of Lemma 8. By Lemmas 2 and 7. �

Proof of Lemma 9. Clearly, w is a member of the set i ∪ support(w
~w) Thus, in order to establish

the goal, it suffices to show that this set is closed. This is easy: by Lemma 3, this set is exactly the
set of marked vertices after constructing the tree w

~w ; thus, by Lemma 8, it is closed. �

Proof of Lemma 10. As in the proof of the previous lemma, it suffices to show that the set
support(w

~w :: ~v) is closed, this time with respect to Ē. By Lemma 3, this set is just ¬i. (We rely on
a slightly subtle detail: the use of V in the hypothesis dfs (i) w

~w :: ~v (V) means that all vertices are
marked at the end. So, any vertex that is not in support(w

~w :: ~v) must be in i.) Thus, we have to
prove that ¬i is closed with respect to Ē, or in other words, that i is closed with respect to E. This
is true by hypothesis. �

Proof of Lemma 11. By definition, scc(w) is the intersection of the set of vertices that w can reach
and the set of vertices that can reach w. Thus, the goal is:

E?({w}) ∩ Ē?({w}) ⊆ support(
w

~w
)

This follows immediately from Lemmas 9 and 10, by intersection. �

Proof of Lemma 12. Because scc(w) is defined as E?({w}) ∩ Ē?({w}), the goal boils down to
Ē?({w}) ⊆ E?({w}). By Lemma 10, Ē?({w}) is a subset of support(w

~w). Furthermore, by Lemma 5,
the vertices in a tree are reachable from its root, so support(w

~w) is a subset of E?({w}). �

Proof of Lemma 13. We prove the inclusion E?({w}) ⊆ support(w
~w). (The reverse inclusion follows

from Lemma 5.) Lemma 9 yields E?({w}) ⊆ i ∪ support(w
~w), so the goal boils down to proving that

the sets E?({w}) and i are disjoint. This follows from the fact that w lies outside i (Lemma 3) and
from the hypothesis that ¬i is closed. �

Proof of Lemma 14. This proof relies on two auxiliary lemmas:

1. If in the graph E, ~v goes into ~w, then in the graph E′, the same holds, and furthermore, in E′,
no edge goes to a masked vertex. Formally, E(~v) ⊆ ~w implies E′(~v) ⊆ ~w \M .

2. If no vertex in the tree w
~w is masked, and if in the graph E, w covers ~w, then in the graph

E′, the same holds. Formally, {w} ∪ support(~w) ⊆ ¬M and roots(~w) ⊆ E({w}) imply
roots(~w) ⊆ E′({w}).

13

Pottier

The proof of the main result can then be carried out by induction, using these auxiliary lemmas as
well as Lemma 1 where needed. �

Proof of Lemma 15. By induction over the dfs hypothesis. The one non-trivial case arises when
the forest ~v begins with a tree w

~w and w is not masked, i.e., w 6∈ M . In that case, in order to apply
Filter-Visible, we must prove that no descendant of w can be masked, i.e., support(~w) ⊆ ¬M . We
assume, by way of contradiction, that some vertex x is in support(~w) and in M . Then, we find that
there is a path r E? w E? x E? r. Indeed,

• r E? w follows from the fact that r reaches the roots of ~v, i.e., support(~v) ⊆ E?({r}).

• w E? x follows from the fact that x is a descendant of w, i.e., x ∈ support(~w), and Lemma 5.

• x E? r follows from the fact that x is masked, i.e. x ∈M , and our assumption that M is scc(r).

The existence of this path implies w ∈ scc(r), that is, w ∈M . Contradiction. �

Proof of Lemma 16. The relation · ≥M · is compatible with forest concatenation. Thus, the goal
boils down to proving ~v ≥M ~v and r

~w ≥M ~w′. The former sub-goal follows from support(~v) ⊆ ¬M ,
which itself follows from the fact that M is contained in the tree r

~w (Lemma 11). The latter sub-goal
follows from Lemma 15, using Lemmas 1 and 5 along the way. �

Proof of Lemma 17. In order to establish the desired statement, we formulate a strengthened
statement, which is amenable to a proof by induction. This strengthened statement allows for the
existence of a set M of so-called “masked” vertices, which is closed with respect to both E and Ē, i.e.,
no edge leaves or enters this set. Intuitively, M represents the components that have been already
identified and removed.

The strengthened statement is as follows: under the following five hypotheses,

E(M) ⊆M (1)
Ē(M) ⊆M (2)

dfsE (M) f1 (V) (3)
dfsĒ (M) f2 (V) (4)

rev(post(f1)) orders f2 (5)

the forest f2 is an SCC forest for the graph E.
It is clear that the original statement follows from the strengthened statement by letting M = ∅.
As suggested by Wegener [8], the proof of the strengthened statement is by induction. We use

structural induction over the forest f2. In the base case, f2 is empty and the result is immediate. So,
we focus on the inductive case, where f2 is a non-empty forest. Throughout this proof, the reader is
encouraged to refer to Figure 3. For some r, ~w2, and ~v2, we have:

f2 =
r

~w2
:: ~v2 (6)

According to (3) and (4), the forests f1 and f2 have a common non-empty support, namely ¬M . This
implies that the hypothesis (5) cannot follow from the rules Ordered-Nil or Ordered-Skip. (The
premise r 6∈ support(~v) in Ordered-Skip is exploited here.) Thus, it must follow from Ordered-Root.
This means that the root r of the first tree in f2 is the head of the reverse post-order of f1. For some ~r,
we have:

rev(post(f1)) = r ::~r (7)
~r orders ~v2 (8)

14

Depth-First Search and Strong Connectivity in Coq

Equation (7) implies that the forest f1 is non-empty (this, we knew already) and that the vertex r is
the root of its last tree. Thus, for some ~v1 and ~w1, we have:

f1 = ~v1 ++
r

~w1
(9)

As r is the root of the last tree in the forest f1, Lemma 12 states that the component of r is exactly
its reverse closure:

scc(r) = Ē?({r}) (10)

As r is the root of the first tree in the forest f2, Lemma 13 states that the reverse closure of r is
exactly (the support of) the tree r

~w2
:

Ē?({r}) = support(
r

~w2
) (11)

By combining equations (10) and (11), we find that we have established an important intermediate
result: the first tree in the forest f2 is indeed a component of the graph E. There remains to prove
that the remainder of this forest, namely ~v2, is an SCC forest.

In order to do this, the idea is to remove the component scc(r) from the graph, as well as from the
forests f1 and f2, and argue that the smaller graph and forests thus obtained are suitable arguments
for the main induction hypothesis.

Let us write E′ for the graph E deprived of all edges whose source or destination lies in scc(r).
Let us write M ′ for the set M ∪ scc(r). We prove that ~v2 is an SCC forest with respect to E′; this
clearly implies that it is also an SCC forest with respect to E.

By Lemma 16, the component scc(r) forms a prefix of (the last tree of) the forest f1, which means
that it can be removed, yielding a well-formed forest. Thus, for some ~w′

1, we have:

f1 =

~v1 ++
r

~w1
≥scc(r) ~v1 ++ ~w′

1 (12)

By (12) and by Lemma 14, our diminished forest is a DFS forest with respect to our diminished graph:

dfsE′ (M ∪ scc(r)) ~v1 ++ ~w′
1 (V) (13)

Now, in order to establish our goal, namely that ~v2 is an SCC forest with respect to E′, we apply
the main induction hypothesis to the graph E′, to the set of masked vertices M ′, and to the forests
~v1 ++ ~w′

1 and ~v2. We must now check that the five requirements of the induction hypothesis hold:

1. The set M ′ is closed with respect to the graph E′, i.e., E′(M ′) ⊆ M ′. This is trivial, as the
vertices in scc(r) carry no edges.

2. M ′ is reverse-closed with respect to E′, i.e., Ē′(M ′) ⊆M ′. This is again trivial.

3. This requirement is exactly (13).

4. ~v2 is a valid DFS forest with respect to E′ and M ′, i.e., dfsĒ′ (M ′) ~v2 (V). This follows by
Lemma 14 from dfsĒ (M ′) ~v2 (V), which itself (in light of the fact that M ′ = M ∪ support(r

~w2
))

follows directly from our initial assumption about ~v2.

5. The last requirement is rev(post(~v1 ++ ~w′
1)) orders ~v2. As the predicate “~r orders ~v” is insensitive

to the presence in the list ~r of vertices that are not in the support of ~v, and in the light of (12),
this goal is equivalent to rev(post(f1)) orders ~v2, which follows from (7), (8), and Ordered-Skip.

This concludes the proof. �

15

	Introduction
	Depth-First Search
	Sets and relations
	Forests
	DFS Forests
	Definition
	Basic properties
	Sound discovery
	Complete discovery
	DFS forests and strongly connected components

	Strong Connectivity
	Root Ordering
	Suffix Ordering
	Proof of Kosaraju's Algorithm

	A Depth-First Search Algorithm
	Assumptions
	A Recursive Function
	A Specification
	Wrapping Up

	Related Work
	Conclusion
	Proofs

