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Abstract—Mezzo is a programming language in the tradition
of ML. It offers algebraic data types, first-class functions, and a
system of duplicable or affine permissions that controls aliasing
and access to mutable memory. We present a formal definition of
Core Mezzo, an explicitly-typed calculus that underlies Mezzo,
and establish the soundness of its type and permission system.
Our definitions and proofs have been machine-checked.

I. A GLIMPSE OF MEZZO

The programming language Mezzo [1], designed by
Jonathan Protzenko and by the author, is equipped with a static
type and permission discipline that aims to better control the
use of mutable memory. Compared with the type systems of
ML or Java, Mezzo is in some ways more restrictive (because
a mutable memory block cannot be read or written without a
permission) and in other ways more expressive (because, with
an appropriate permission, it is possible to “change the type”
of a mutable memory block, yielding an updated permission).
Thus, Mezzo is intended to help catch more programming
errors and to enable certain idioms that traditional typed
programming languages forbid.

Mezzo has user-defined algebraic data types, which serve as
types for memory blocks. It distinguishes immutable blocks,
which have “an arbitrary number of readers”, and mutable
blocks, which have “a unique owner”. For instance, line 1 of
Figure 1 defines a type of references, or mutable memory cells
of one field. In short, a value r of type “ref a” is a pointer
to a mutable block whose contents field currently contains
a value of type a.

When we write that r “has type” ref a, we mean that
a permission to use r at this type, written “r @ ref a”,
is presently available. At different program points, different
permissions for r may be available: r does not necessarily
have a fixed type throughout its scope. The programmer
declares which permissions must be available upon entry and
exit of every function, and the type-checker ideally1 infers
which permissions are available at each point within the
function body. Permissions do not exist at runtime.

The function sswap in figure 1 expects two parameters r

and s and returns a unit result. It requires the permission
“r @ ref a * s @ ref b” and returns another permission,
namely “r @ ref b * s @ ref a”. These permissions are
analogous to a pre- and postcondition in separation logic [2].
At mutable data types, conjunction * is separating: thus, the
function sswap can be applied only to two distinct cells. Its
type, which is polymorphic in a and b, reflects its runtime

1At present, we have a working yet imperfect implementation of permission
inference, which is outside the scope of this paper.

1mutable data ref a = Ref { contents: a }
2

3val sswap [a, b]
4(consumes r: ref a, consumes s: ref b)
5: (| r @ ref b * s @ ref a)
6=
7let tmp = r.contents in
8r.contents <- s.contents;
9s.contents <- tmp
10

11mutable data pool a = Pool {} adopts ref a
12

13val wswap [a] (p: pool a, r: dynamic, s: dynamic) : () =
14if r != s then begin
15take r from p;
16take s from p;
17sswap (r, s);
18give s to p;
19give r to p
20end

Fig. 1. Two Mezzo functions for swapping two references

behavior: it performs a strong update, that is, it “changes the
types” of r and s.

Because conjunction is separating, “r @ ref a” does not
imply “r @ ref a * r @ ref a”. That is, the permission
“r @ ref a” cannot be duplicated: it is affine. Thus, for
each reference cell, there exists at most one permission, which
represents the “ownership” of the cell and carries the type of
its content.

The purely static fragment of Mezzo’s type and permission
discipline has limited expressiveness. It can describe tree-
structured heap fragments, but cannot express more complex
aliasing patterns. In order to work around this limitation
without requiring the programmer to provide complex logical
assertions and proofs, Mezzo offers an “escape hatch”, which
involves runtime checks.

In line 11 of figure 1, for instance, we declare an algebraic
data type “pool a”. An object of this type is able to “adopt”
an arbitrary number of cells of type ref a. (It has no fields;
only its address matters.) Two instructions, give and take,
allow a cell to be adopted by or taken away from a pool.
These instructions maintain, at runtime, a pointer from each
cell to its adopter (if any). The instruction “give r to p”
sets this pointer. The instruction “take r from p” checks
that it points to p, then clears it. Thus, take fails if the cell r
is not currently adopted by p. The possibility of a failure is
the price to pay for the flexibility offered by this mechanism.

The function wswap expects a pool p and two pointers r

and s, which the programmer knows (or believes) are currently
adoptees of p. The type dynamic describes a pointer to



an arbitrary object in the heap. At this type, conjunction is
not separating: hence, r and s may or may not be distinct.
The type dynamic does not have an ownership reading: the
permission “r @ dynamic” does not imply that the object at
address r can be read or written. In the body of wswap, the
take instructions check (at runtime) that r and s are members
of (i.e., adopted by) the pool p, and take them out of the
pool. After these instructions, the permissions “r @ ref a”
and “s @ ref a” are available, so it is legal to call sswap.
These permissions are preserved by the call and consumed by
the give instructions, which return r and s to the pool. The
dynamic test r != s is not an optimization: it is required,
because an attempt to take a cell twice would fail at runtime.

By lack of space, we cannot fully illustrate the use and
expressive power of Mezzo. A separate paper [3] offers a
slower-paced presentation, with motivating examples. Our
purpose in the present paper is to give a definition of Mezzo’s
type and permission discipline and to establish its soundness.

II. OVERVIEW OF THE PAPER

We formalize Core Mezzo, a calculus that is slightly simpler
and lower-level than Mezzo. We do not formalize Mezzo itself
or the translation from Mezzo down to Core Mezzo, which
are outside of the scope of this paper. Informally, the main
differences between the two are:
• Core Mezzo has simpler (more verbose) types, which

often involve polymorphism2 and singleton types. For
instance, in Core Mezzo, the type of sswap would be:

∀r, s : value. ∀a, b : type.
(=r, =s | r@ ref a ∗ s@ ref b)→ (() | r@ ref b ∗ s@ ref a)

• Mezzo has named data constructors and fields, whereas
Core Mezzo numbers them sequentially;

• Mezzo offers an ML-like match construct, whereas Core
Mezzo has a simpler switch construct, which performs
case analysis but does not bind any variables;

• the syntax of Core Mezzo is designed in such a way that
every intermediate computation must be named.

The paper is organized as follows. We present the syntax
(§III) of the programs, types, and permissions. We equip Core
Mezzo with an operational semantics (§IV). Then, we define
the type and permission system (§V), and we sketch a proof of
its soundness (§VI). We conclude with a discussion of some
of the related work (§VII).

All definitions and statements have been machine-checked
using the Coq proof assistant, and are available online [4].
The versions presented in this paper are manually transcribed
and contain a few abuses of notation. In particular, we use
an informal “nominal” notation for variables, whereas the
mechanized proof uses de Bruijn indices.

We believe the main contributions of this paper are:
• a relatively simple definition and proof for a rich system,

which supports a realistic surface programming language;
• the novel concept of adoption and abandon, together with

its proof of soundness.

2Polymorphism is omitted from this paper, but is present in the Coq proof.

m ::= Modes
| D duplicable (immutable)
| X exclusive (mutable)

v, t, u, T, U, P,Q ::= Everything
| x variable

Terms
| λx.t function
| v t function application
| ` memory location
| new i {~v} memory allocation
| v.f field access
| v.f ← v field update
| switch (v)~t case analysis
| tag of v ← i tag update
| give v to v adoption
| take v from v abandon
| fail runtime failure

Types
| T → U function type
| m i {~T} adopts U memory block type
| dynamic arbitrary pointer type
| τ algebraic data type
| =v singleton type
| T | P qualified type
| ⊥ empty type

Permissions
| v@T atomic permission
| empty empty permission
| P ∗ P permission conjunction
| ∃x.P existential permission

Sequences
| ε empty sequence
| t;~t non-empty sequence

κ ::= Kinds
| prog | value | type | perm | seqκ

Fig. 2. Syntax of programs, types, and permissions

III. SYNTAX

Programs, types, and permissions form a single syntactic
category, whose definition appears in figure 2. We let v, t, u,
T , U , P , Q range over this category, where, by convention,
we use v for “values”, t and u for “programs” or “terms”, T
and U for “types”, P and Q for “permissions”. A kind system
is imposed later on (§III-G) so as to give formal meaning to
these sub-categories. There is a single name space of variables.

A. Programs

The “program” or “term” fragment of the syntax forms a
fairly standard λ-calculus. It is untyped: terms do not refer to
types or permissions.

There are only two forms of values, namely functions λx.t
and memory locations `. A memory location is a natural
number, which represents an address in the heap.

As we will see (§IV), a memory block contains an integer
tag i and a number of fields, each of which holds a value. For
this reason, the memory allocation instruction “new i {~v}”
specifies the desired values of the tag and fields. In the
field access and field update expressions, the field f is an



integer number. The tag of a block is examined via the C-
like construct “switch (v)~t”, which performs case analysis and
transfers control to an appropriate branch, and can be updated
via the instruction “tag of v ← i”.

“give v1 to v2” and “take v1 from v2” are the adoption and
abandon instructions (§I). Every block implicitly includes a
special field, known as the adopter field, which contains either
null or a valid memory location. The value of this field changes
from null to non-null during adoption and from non-null to
null during abandon. Abandon can fail at runtime.

Sequencing “let x = u in t” is sugar for “(λx.t) u”. The
right-hand side of applications is the only evaluation context.

B. Types

A function type “T → U” describes a function that maps
an argument of type T to a result of type U .

A memory block type “m i {~T} adopts U”, also known
as a “structural” type, describes the address of a block whose
tag is currently i and whose fields currently have types ~T .
The mode m is either D, which indicates that this block is
immutable and shared by arbitrarily many readers, or X, which
means that this block is mutable and has an exclusive owner.
The clause “adopts U” indicates that this block may have
adoptees of type U . In the particular case where U is the
empty type ⊥, this block in fact does not have any adoptees.
We use the words “block” and “object” interchangeably.

The type “dynamic” describes the address of a block that
has an implicit adopter field. For simplicity, we adopt the
convention that every block has such a field, so a value has
type dynamic if and only if it is a (valid) memory location. The
only operation permitted by the type dynamic is take.

We assume that τ ranges over a fixed set of (names for)
algebraic data types3. We further assume that each τ comes
with a definition, which consists of:
• a mode, mode(τ), which indicates whether a block of

type τ is immutable or mutable;
• an integer n and a function of [0, n) to sequences of

types; this means that the valid tags for a block of type τ
are the elements of [0, n) and tells, for every such tag i,
how many fields exist and what their types are; we write
“τ has a branch i {~T}” when this function maps i to ~T .

• a type, adopts(τ); this is the type of the objects that can
be adopted by a block of type τ .

The algebraic data type τ is isomorphic to the sum of the
structural types “m i {~T} adopts T ”, where m is mode(τ),
τ has a branch i {~T}, and T is adopts(τ).

We write “τ is a record {~T}” if τ admits just one tag
(namely the tag 0) and τ has a branch 0 {~T}.

For instance, assuming that int is the type of integers,
an algebraic data type ref of integer references would be
characterized by: mode(ref) = X, “ref is a record {int; ε}”,
and adopts(ref) = ⊥. An algebraic data type pool analogous
to that of figure 1 would be characterized by: mode(pool) = X,
“pool is a record {ε}”, and adopts(pool) = ref.

3In the current proof, algebraic data types are not parameterized.

Core Mezzo does not have built-in product types, sum types,
reference types, or recursive types, because these notions are
subsumed by the combination of structural types and algebraic
data types. In particular, the unit type () is sugar for the
structural type “D 0 {ε} adopts ⊥”, and the unit term () is
sugar for the memory allocation expression “new 0 {ε}”.

If v is a value, then “=v” is a type, whose sole inhabitant is
the value v. Singleton types are used to keep track of must-
alias relationships.

The type “T | P ” can be thought of as a product type,
whose left-hand component is a type and whose right-hand
component is a permission. It is typically used to express rich
function types, such as (T | P )→ (U | Q), which describes a
function of T to U with precondition P and postcondition Q.
Permissions do not exist at runtime: a value of type T | P and
a value of type T have the same runtime representation. We
write (| P ) as a short-hand for (() | P ).

C. Permissions

An atomic permission “v@T ” can be viewed as an assertion
that the value v currently has type T , or as a permission to
use v at type T . In particular, if T is a structural type, then
“v@T ” is an assertion about the current contents of the block
at address v as well as a permission to read and (if T indicates
that this block is mutable) to update this block. It is analogous
to a “points-to” assertion in separation logic [2].

An atomic permission that involves a singleton type, such
as “v1 @ =v2”, means that v1 admits the singleton type =v2. In
other words, it means that v1 and v2 denote the same value.
We write “v1 = v2” as sugar for such a permission.

“P ∗ Q” is the conjunction of the permissions P and Q.
The permission “empty” is a left and right unit for conjunction.

An existential permission “∃x.P ” asserts that there exists
a value, denoted by the variable x, such that P holds.
Existential permissions offer a formalism for explaining how
the Mezzo type-checker generates “fresh” auxiliary variables
when breaking composite permissions into smaller pieces
(DECOMPOSEBLOCK, §V-B).

D. Sequences

Sequences of values ~v, sequences of terms ~t, and sequences
of types ~T are part of the single, all-encompassing syntactic
category. This is achieved simply by adding the productions
t ::= ε and t ::= t;~t to the syntax.

E. Duplicable types and permissions

Mezzo is affine: the duplication of permissions is subject
to certain restrictions. In the tradition of Linear Logic, many
affine type systems in the literature adopt the convention that
every type is by default affine (non-duplicable) and that the
duplicable types are marked with an explicit “!” modality.
Here, instead, this information is implicit. The predicate
“T is duplicable”, which is co-inductively defined by the rules
in figure 3, identifies a subset of the types and permissions
that are considered inherently duplicable. Duplication, when
permitted, is implicit: it takes the form of a permission
subsumption axiom (DUPLICATE, §V-B).



T → U is duplicable
~T is duplicable

D i {~T} adopts U is duplicable
dynamic is duplicable

mode(τ) = D
for every i and ~T such that τ has a branch i {~T},

~T is duplicable

τ is duplicable

=v is duplicable
T is duplicable P is duplicable

T | P is duplicable
⊥ is duplicable

T is duplicable

v@T is duplicable
empty is duplicable

P is duplicable Q is duplicable

P ∗ Q is duplicable

P is duplicable

∃x.P is duplicable
ε is duplicable

T is duplicable ~T is duplicable

T ; ~T is duplicable

Fig. 3. Co-inductive definition of the duplicable types

Let us comment on the first four rules in figure 3. Because
we do not wish to impose a visually cumbersome distinction
between duplicable and non-duplicable functions, we adopt the
convention that function types are duplicable4. The structural
types whose mode is D are duplicable, while those whose
mode is X are not. The type dynamic is duplicable. This
allows creating multiple pointers to a block, albeit none of
these pointers comes with a read or write access right. An
algebraic data type τ is duplicable if and only if its unfolding
is duplicable. The presence of this rule is the reason why the
judgement “T is duplicable” must be co-inductively defined.
An inductive definition would be sound, but too strict.

F. Adoption as a relation between types

A type is exclusive if it is of the form “X i {~T} adopts U”
or “τ” where mode(τ) = X.

It is convenient to define a relation between types, written
“T adopts U”, which means that an object of type T may
have adoptees of type U . It is defined as follows:

1) if U is exclusive, then the block type “X i {~T} adopts U”
adopts U ;

2) if adopts(τ) = U and mode(τ) = X and U is exclusive,
then the algebraic data type τ adopts U .

This definition means, in particular, that (a) adopters and
adoptees must have exclusive type; and (b) the type of the
adopter determines the type of the adoptee. Both of these
conditions are required for soundness.

G. Kinds

The kinds of figure 2 define the following subsets of the
syntactic universe.

The kind prog classifies source programs and programs
under execution. Memory locations ` are inaccessible to the
programmer and appear only during execution.

The kind value classifies values. The values include λ-
abstractions, memory locations, and variables. The kind value
forms a subset of the kind prog: a value is a program.

The kinds type and perm classify types and permissions.
There are two ways in which types and permissions can

4In principle, a type of functions-that-can-be-used-at-most-once can be
encoded as a package of type ∃P.(((T | P )→ U) | P ). However, existential
quantification over permissions is not yet part of the formalization.

depend on (that is, refer to) values. One is the singleton type
=v; the other is the atomic permission v@T .

The kind seqκ classifies a sequence of things of kind κ.
The well-kindedness judgement takes the form K ` t : κ,

where a kind environment K maps variables to kinds, t is a
piece of syntax, and κ is a kind. Its definition appears in an
appendix (§A). The empty kind environment is written ∅.

IV. DYNAMIC SEMANTICS

Core Mezzo is equipped with a small-step operational
semantics. It is a standard call-by-value λ-calculus, equipped
with mutable, heap-allocated memory blocks, and extended
with adopter fields and give and take operations.

An adopter pointer p is either null or a memory location `.
A block 〈 i | p | ~v 〉 is a triple of an integer tag i, an adopter

pointer p, and a sequence ~v of closed values.
A heap h is a function of an initial segment of the natural

numbers to blocks. We write ∅ for the empty heap. We write
limit h for the first unallocated address in the heap h. We write
h + b for the heap that extends h with a mapping of limit h
to the block b. If the memory location ` is in the domain of
the heap h, then we write h[` 7→ b] for the heap that maps `
to b and agrees with h elsewhere. We use this operation only
when the new block b has the same length as the previous
block h(`), so that Core Mezzo can be implemented on top
of a runtime system that does not allow blocks to be resized.

A configuration h / t pairs a heap h and a closed term t.
The small-step operational semantics appears in figure 4.
The reduction rule for memory allocation extends the heap

with a new block 〈 i | null | ~v 〉 and returns its address.
In the reduction rules for field access and field update, we

write ~v for a sequence of values that has a hole in its f -th
position, and we write ~v [f := v] for the sequence obtained
by filling this hole with the value v.

The same notation is used in the reduction rule for switch.
The heap is looked up at address `. The tag i that is found
there is used to select the i-th branch of the switch construct.

The tag update instruction changes the tag of the block
found at address ` from i to i′.

The give instruction expects its arguments to be addresses
`′ and ` and expects the adopter field of the block at `′ to
contain the value null. The value ` is written to this field, so
as to record the fact that `′ has been adopted by `.



initial configuration new configuration side condition
h / v t −→ h / v t′ h / t −→ h′ / t′

h / v fail −→ h / fail
h / (λx.t) v −→ h / [v/x]t ∅ ` v : value
h / new i {~v} −→ h+ 〈 i | null | ~v 〉 / limit h
h / `.f −→ h / v h(`) = 〈 i | p | ~v [f := v] 〉
h / `.f ← v′ −→ h[` 7→ 〈 i | p | ~v [f := v′] 〉] / () h(`) = 〈 i | p | ~v [f := v] 〉
h / switch (`) (~t [i := t]) −→ h / t h(`) = 〈 i | p | ~v 〉
h / tag of `← i′ −→ h[` 7→ 〈 i′ | p | ~v 〉] / () h(`) = 〈 i | p | ~v 〉
h / give `′ to ` −→ h[`′ 7→ 〈 i | ` | ~v 〉] / () h(`′) = 〈 i | null | ~v 〉
h / take `′ from ` −→ h[`′ 7→ 〈 i | null | ~v 〉] / () h(`′) = 〈 i | ` | ~v 〉
h / take `′ from ` −→ h / fail h(`′) = 〈 i | p | ~v 〉 ∧ p 6= `

Fig. 4. Operational semantics

The take instruction also expects two locations. It tests
whether the adopter field of the block at `′ contains the value `.
If so, null is written to this field, so as to record the fact that
`′ is no longer adopted by `. Otherwise, the instruction fails.

An answer is a configuration of the form h / v, where
v is a value, or h / fail. A configuration that cannot take a
reduction step, but is not an answer, is stuck. The central result
of this paper is that a well-typed program cannot reach a stuck
configuration. It can, however, fail. Unless the programmer has
used fail in the source code, the only way in which fail can arise
is via the last reduction rule, where one attempts to execute
“take `′ from `” and finds that the adopter field at `′ does not
contain `. The static discipline does not rule out this error.

V. STATIC SEMANTICS

A. Typing judgement and interpretation of permissions
The main two judgements, which depend on each other, are:
1) the typing judgement R;K;P ` t : T ;
2) the permission interpretation judgement R;K 
 P .
When type-checking a source program, the parameter R is

trivial (it is the empty resource void). Non-trivial resources R
are used only when considering programs under execution.
In the figures that define the above judgements (figures 5,
6, and 7), the aspects that concern programs under execution
are shaded and can be ignored for the moment. They are
explained later on (§VI).

The typing judgement R;K;P ` t : T states that, under
the assumption represented by the permission P , the term t
has type T . It is analogous to a Hoare triple: P and T can be
thought of as a pre- and postcondition.

The permission interpretation judgement R;K 
 P states
that the permission P is valid. If one ignores the parameter R,
one can take this to mean that P is “true”: in particular, the
permission v@T is “true” if v has type T . We revisit this
intuitive interpretation later on (§VI-B).

The typing judgement is inductively defined by two groups
of rules, which appear in figures 5 and 7. If a derivation uses
only the rules in the first group (except possibly under λ), then
it is a canonical derivation, and we write R;K;P 
 v : T . (In
that case, the term must be a value v.) If a derivation uses the
rules in both groups, we write R;K;P ` t : T .

Let us first describe the “canonical” typing rules (figure 5).
With the exception of CUT, each of these rules introduces

one of the type constructors in figure 2. Thus, these rules
“give meaning” to the type constructors. FUNCTION separately
extends the kind environment with the binding x : value and the
precondition P with the assumption x@T . The requirement
that P be duplicable stems from our decision to consider
function types duplicable (§III-E). Because a function can be
invoked arbitrarily many times, it must not capture a non-
duplicable permission. BLOCK and DYNAMIC concern memory
locations. We defer their explanation to §VI-C. FOLD states
that v admits the type τ if and only if it admits some structural
unfolding of τ . SINGLETON states that v is one (and the only)
inhabitant of the singleton type =v. FRAME is analogous to
the frame rule of separation logic [2]. If one ignores the
parameters R1 and R2, CUT states that if t is well-typed under
the composite precondition P1 ∗ P2 and if P1 happens to be
“true” then t is well-typed under just P2.

ATOMIC (figure 6) states, roughly, that the permission v@T
is “true” if the value v has type T under an empty precondition.
(A cut, in the style of the typing rule CUT, is allowed.) The
type derivation for v must be canonical. This is an important
technical point. An arbitrary type derivation can make use of
the permission subsumption relation (§V-B), whose soundness
will be established relative to the interpretation of permissions
(lemma A.9). Because the interpretation of permissions rests
upon canonical type derivations only, we avoid a circularity.

The non-canonical rules (figure 7) are (a) syntax-directed
rules for constructs that are not values; (b) non-syntax-directed
rules that cannot occur in canonical derivations.

APPLICATION is standard, except in the manner in which
the requirements about the sub-terms v and t are formulated.
Whereas the requirement about t is formulated as a premise,
the assumption about v appears as part of the precondition.
This formulation makes CUT the only typing rule whose
conclusion involves a join of two resources R1 ? R2.

NEW states that “new i {~v}” produces a memory location of
structural type “m i {~T} adopts ⊥”. The mode m is arbitrary:
the programmer chooses whether to create an immutable or
mutable block. (In Mezzo, the programmer provides the name
of a data constructor, out of which m and i are deduced.) The
notation ~v@ ~T is a short-hand for an iterated conjunction and
is defined only if the sequences ~v and ~T have the same length.
The clause adopts ⊥ reflects the fact that a newly allocated
block does not have any adoptees.



FUNCTION
K ` T : type P is duplicable
R̂; K,x : value;P ∗ x@T ` t : U

R; K;P � λx.t : T → U

BLOCK
R1 ? R2 = R

R1; ∅ 
 ~v@ ~T R2 ` ` adopts ~̀′ a R′
2

R′
21 ? R

′
22 = R′

2

R′
21; ∅ 
 ~̀′ @U ∅ ` U : type R′

22(`) = m 〈 i | null | ~v 〉

R; K;P � ` : m i {~T} adopts U

DYNAMIC
` < limit R

R; K;P � ` : dynamic

FOLD
R; K;P � v : m i {~T} adopts U

mode(τ) = m τ has a branch i {~T} adopts(τ) = U

R; K;P � v : τ

SINGLETON
K ` v : value

R; K;P � v : =v

FRAME
R; K;P � t : T

R; K;P ∗ Q � t : T | Q

CUT
R2; K;P1 ∗ P2 � t : T

R1; K 
 P1

R1 ? R2; K;P2 � t : T

Fig. 5. Typing rules: canonical fragment; � stands for one of 
 (canonical) and ` (non-canonical)

ATOMIC
K ` v : value

R1; K;P 
 v : T

R2; K 
 P

R1 ? R2; K 
 v@T

EMPTY
R; K 
 empty

STAR
R1; K 
 P1 R2; K 
 P2

R1 ? R2; K 
 P1 ∗ P2

EXISTS
K,x : value ` P : perm

K ` v : value
R; K 
 [v/x]P

R; K 
 ∃x.P

Fig. 6. The interpretation of permissions

APPLICATION
K ` v : value R; K;Q ` t : T

R; K; (v@(T → U)) ∗ Q ` v t : U

NEW
K ` ~v : seq value K ` ~T : seq type

R; K;~v@ ~T ` new i {~v} : m i {~T} adopts ⊥

READ
K ` v : value T is duplicable

P = v@(m i {~T [f := T ]} adopts U)

R; K;P ` v.f : T | P

WRITE
K ` v1 : value K ` v2 : value

R; K; (v1 @(X i {~T [f := T1]} adopts U)) ∗ (v2 @T2) ` v1.f ← v2 : () |
(v1 @(X i {~T [f := T2]} adopts U))

SWITCH
K ` v : value K ` T : type

mode(τ) = m adopts(τ) = U

for every i and ~T such that τ has a branch i {~T},
R; K;P ∗ (v@(m i {~T} adopts U)) ` ~t(i) : T

R; K;P ∗ (v@ τ) ` switch (v)~t : T

WRITETAG
K ` v : value

R; K; v@(X i1 {~T} adopts U) ` tag of v ← i2 : () |
(v@(m i2 {~T} adopts U))

GIVE
K ` v1 : value K ` v2 : value T2 adopts T1

R; K; (v1 @T1) ∗ (v2 @T2) ` give v1 to v2 : () |
(v2 @T2)

TAKE
K ` v1 : value K ` v2 : value T2 adopts T1

R; K; (v1 @ dynamic) ∗ (v2 @T2) ` take v1 from v2 : () |
((v1 @T1) ∗ (v2 @T2))

FAIL
K ` T : type

R; K;P ` fail : T

SUBLEFT
K ` P1 ≤ P2 R; K;P2 ` t : T

R; K;P1 ` t : T

SUBRIGHT
R; K;P ` t : T1 K ` T1 ≤ T2

R; K;P ` t : T2

EXISTSELIM
R; K,x : value;P ` t : T

R; K;∃x.P ` t : T

Fig. 7. Typing rules: non-canonical fragment

SUB
K,x : value ` x@T ≤ x@U

K ` T ≤ U

SEQSUBNIL
K ` ε ≤ ε

SEQSUBCONS

K ` T ≤ U K ` ~T ≤ ~U

K ` T ; ~T ≤ U ; ~U

Fig. 8. Subsumption: types and sequences of types



REFLEXIVE
K ` P ≤ P

TRANSITIVE
K ` P1 ≤ P2 K ` P2 ≤ P3

K ` P1 ≤ P3

EMPTYTOP
K ` P ≤ empty

EMPTYAPPEARS
K ` P ≤ empty ∗ P

DISAPPEARS
K ` P ∗ Q ≤ Q

STARCOMMUTATIVE
K ` P1 ∗ P2 ≤ P2 ∗ P1

STARASSOCIATIVE
K ` P1 ∗ (P2 ∗ P3) ≤ (P1 ∗ P2) ∗ P3

EQUALITYREFLEXIVE
K ` v : value

K ` empty ≤ v = v

EQUALITYSYMMETRIC
K ` v1 = v2 ≤ v2 = v1

EQUALITYTRANSITIVE
K ` (v1 = v2) ∗ (v2 = v3) ≤ v1 = v3

EQUALSFOREQUALS
K,x : value ` P : perm

K ` (v1 = v2) ∗ ([v1/x]P )
≤ (v1 = v2) ∗ ([v2/x]P )

DUPLICATE
P is duplicable

K ` P ≤ P ∗ P

HIDEDUPLICABLEPRECONDITION
P is duplicable

K ` (v@((T | P )→ U)) ∗ P
≤ v@(T → U)

MIXSTARINTRO
K ` (v@T ) ∗ P ≤ v@(T | P )

MIXSTARELIM
K ` v@(T | P ) ≤ (v@T ) ∗ P

EXISTSINTRO
K ` v : value

K,x : value ` Q : perm

K ` [v/x]Q ≤ ∃x.Q

EXISTSHOIST
K ` (∃x.P ) ∗ Q ≤ ∃x.(P ∗ Q)

BOTTOM
K ` Q : perm

K ` v@⊥ ≤ Q

DECOMPOSEBLOCK
K ` T : type K, [] : type ` ~T : seq type

K ` v@(m i {~T [f := T ]} adopts U)

≤ ∃x.((v@(m i {~T [f := =x]} adopts U)) ∗ (x@T ))

RECOMPOSEBLOCK
K, [] : type ` ~T : seq type

K ` (v1 @(m i {~T [f := =v2]} adopts U)) ∗ (v2 @T )

≤ v1 @(m i {~T [f := T ]} adopts U)

FOLD
mode(τ) = m τ has a branch i {~T} adopts(τ) = U

K ` v@(m i {~T} adopts U) ≤ v@ τ

UNFOLD
mode(τ) = m τ is a record {~T} adopts(τ) = U

K ` v@ τ ≤ v@(m 0 {~T} adopts U)

DYNAMICAPPEARS
T is exclusive

K ` v@T
≤ (v@T ) ∗ (v@ dynamic)

COARROW
K ` U1 : type

K ` U1 ≤ T1 K ` T2 ≤ U2

K ` v@(T1 → T2) ≤ v@(U1 → U2)

COBLOCK
K ` ~T ≤ ~U K ` T ≤ U
K ` v@(m i {~T} adopts T )
≤ v@(m i {~U} adopts U)

COSTAR
K ` P1 ≤ P2

K ` Q1 ≤ Q2

K ` P1 ∗ Q1 ≤ P2 ∗ Q2

Fig. 9. Subsumption: permissions

A READ expression “v.f” requires v to be the address of
a block whose field f has type T . (We write ~T [f := T ] for
a sequence of types whose f -th element is T .) This block
may be immutable or mutable: m is unconstrained. Because
reading a field creates a new copy of its content, the type T
must be duplicable. No permission is consumed or altered: the
pre- and postcondition are identical.

A WRITE instruction “v1.f ← v2” requires v1 to be the
address of a block whose field f has type T1. An exclusive
permission for v1 is required, which ensures that “nobody else”
has read or write access to this block. This allows changing the
type of the field f to T2, which, according to the precondition,
is the type of v2. The permission v2 @T2 is consumed5.

The SWITCH construct “switch (v)~t” requires v@ τ , where τ
is an algebraic data type. The last premise checks that every
branch is well-typed. (We write ~t(i) for the i-th element of the
sequence ~t.) A permission refinement step takes place: in the
i-th branch, v@ τ is replaced with the more precise permission
“v@(m i {~T} adopts U)”, an unfolding of τ that incorporates
the knowledge that the block’s tag is i.

Tag update, “tag of v ← i2”, is analogous to field update. An
exclusive permission for v is required and is updated so as to

5One can derive a variant of WRITE where T2 is required to be duplicable
and the permission v2 @T2 is not consumed. One can also derive a variant
of WRITE where no permission about v2 is required and T2 is taken to be
the singleton type =v2.

record that the block now has tag i2. Furthermore, WRITETAG

allows a mode change, from X to an arbitrary m, so that, if
the programmer so wishes, the block becomes immutable.

Adoption, “give v1 to v2”, requires the permissions v1 @T1
and v2 @T2. GIVE’s premise “T2 adopts T1” means that
objects of type T2 may adopt objects of type T1 (§III-F).
v1 @T1 is consumed: the ownership of the adoptee becomes
implicitly bundled with that of the adopter. At any time,
v2 @T2 represents the ownership of v2 and of its adoptees.

Abandon, “take v1 from v2”, requires v1 @ dynamic, which
guarantees that v1 is the address of a block, and implies
that it is safe to read its adopter field. (This permission is
not produced by give, but by subsumption; DYNAMICAPPEARS,
§V-B.) Abandon also requires v2 @T2, which represents the
ownership of v2. These permissions do not imply that v1 is
currently one of v2’s adoptees, which is why one checks,
at runtime, that v1’s adopter field contains the address v2.
The success of this check, together with TAKE’s premise
“T2 adopts T1”, implies that v1 has type T1. The value null
is written to v1’s adopter field, so v1 is no longer considered
adopted by v2. Accordingly, in the postcondition, we recover
the permission v1 @T1.

FAIL states that fail is well-typed in every context. The static
discipline does not prevent this runtime failure.

The subsumption rules, SUBLEFT and SUBRIGHT, correspond
to the consequence rule of Hoare logic. The subsumption



relations K ` P1 ≤ P2 and K ` T1 ≤ T2 are described
further on (§V-B). EXISTSELIM is a left elimination rule for
the existential quantifier.

B. Subsumption

There are three subsumption judgements:
1) for permissions, K ` P ≤ Q;
2) for types, K ` T ≤ U ;
3) for sequences of types, K ` ~T ≤ ~U .

The last two judgements are trivial: subsumption of types is
defined in terms of subsumption of permissions, and subsump-
tion of sequences is defined pointwise (figure 8). Thus, we
review only permission subsumption (figure 9). REFLEXIVE and
TRANSITIVE state that subsumption is a pre-order. EMPTYTOP

and DISAPPEARS state that every permission is affine (i.e., can
be discarded). EMPTYAPPEARS and DISAPPEARS state that empty
is a unit for ∗. STARCOMMUTATIVE and STARASSOCIATIVE state
that ∗ is commutative and associative. EQUALITYREFLEXIVE,
EQUALITYSYMMETRIC, EQUALITYTRANSITIVE, and EQUALS-
FOREQUALS state that equality of values is an equivalence
relation and satisfies Leibniz’ principle. Recall that “v1 = v2”
is sugar for “v1 @ =v2” (§III-C). DUPLICATE states that a
permission that is syntactically considered duplicable (§III-E)
can in fact be duplicated. HIDEDUPLICABLEPRECONDITION

states that if the function v has precondition P , which is
duplicable and available, then one may pretend that v has no
precondition. This allows a closure to capture a duplicable
permission after it has been constructed, whereas the typing
rule FUNCTION of figure 5 allows a closure to capture a dupli-
cable permission when it is constructed. MIXSTARINTRO and
MIXSTARELIM introduce and eliminate the type constructor
“T | P ”. EXISTSINTRO introduces the existential quantifier.
(EXISTSELIM is a typing rule; see figure 7.) EXISTSHOIST hoists
an existential quantifier out of a conjunction. BOTTOM states
that ⊥ is the least type. DECOMPOSEBLOCK introduces a fresh
name for a field. Informally, it says, “if v.f has type T ,
then v.f must be some value x such that x has type T ”.
When T is not duplicable, this subsumption rule must be
applied before the field can be read: indeed, the typing rule
READ (figure 7) is restricted to duplicable types. Because the
singleton type =x is duplicable, READ can be applied after
DECOMPOSEBLOCK has been used. RECOMPOSEBLOCK is the
reverse of DECOMPOSEBLOCK. Informally, it says, “if v1.f is v2
and if v2 has type T , then v1.f has type T ”. FOLD is analogous
to the typing rule by the same name (figure 5). UNFOLD unfolds
an algebraic data type definition. It is restricted to the case
where τ is a record type, i.e., there is only one branch. If there
are multiple branches, no subsumption rule can unfold τ ; a
switch construct must be used instead. DYNAMICAPPEARS states
that if v has type T and T is exclusive, then v has type dynamic
in addition to T . This rule is usually applied immediately
before type-checking an instruction of the form “give v to . . .”.
The adoption instruction consumes the permission v@T ,
but v@ dynamic remains and can later be used to justify a
take instruction. COARROW, COBLOCK, and COSTAR state that
subtyping is a congruence. Functions are contravariant in their

domain and covariant in their codomain. Structural types are
covariant in their fields and in the type of their adoptees. (This
holds both for immutable and mutable blocks.) Conjunction is
covariant. A rule stating that “T | P ” is covariant in T and P
can be derived.

This ends the definition of Core Mezzo. As a sanity check,
we have proved that Core Mezzo subsumes the simply-typed
λ-calculus, so it is not vacuous: see the appendix (§B).

VI. SOUNDNESS

In order to express the global invariant that is enforced by
the type and permission system, we must provide typing judge-
ments not just for source programs, but for programs under
execution. This is done in four steps, as follows. We introduce
a notion of instrumented heap fragment, or resource (§VI-A).
We parameterize our judgements over a resource (§VI-B). We
introduce rules for type-checking memory locations (§VI-C).
Finally, we define a typing judgement for configurations and
prove that the system is sound (§VI-D).

A. Instrumented heap fragments, or resources

An instrumented heap fragment R is a total function of an
initial segment of the natural numbers to instrumented blocks.
An instrumented block is N, D b, or X b, where b is a block.
When R maps an address ` to N, this means that ` is not part of
the heap fragment R, i.e., “we know nothing” about `. When
R maps ` to D b, this means that “we know, and everyone
knows, that there is a block b” at address `, and “everyone
must preserve this fact”, i.e., the block is immutable. When R
maps ` to X b, this means that “we know there is a block b”
at `, and “no-one else knows anything” about `, i.e., we can
mutate this block in arbitrary ways without violating someone
else’s assumptions. In the last two cases, we say that ` is in
the domain of R. The letters D and X respectively stand for
“duplicable” and “exclusive” and correspond to the modes m
that appear as part of structural types (figure 2).

Two instrumented blocks can be combined by a partial
function ?, which is defined as follows:

N ? N = N N ? (X b) = X b
(D b) ? (D b) = D b (X b) ? N = X b

This function is extended pointwise to resources. It tells
whether two partial views of the memory are compatible with
each other. A total function ·̂, which maps an instrumented
block to its “duplicable fragment”, is defined as follows:

N̂ = N (̂D b) = D b (̂X b) = N

A partial order C on instrumented blocks is defined as the
least reflexive relation that satisfies N C (D b). This relation
describes how an inactive principal’s view of memory may
evolve due to actions by other principals. The function ·̂ and
the relation C are also extended to resources. Thus equipped,
resources form a monotonic separation algebra [5].

In order to justify the soundness of adoption and abandon,
we must further restrict our notion of resource. We impose two
properties that every instrumented heap fragment must satisfy.



First, a duplicable block cannot be adopted. In an instrumented
block D b, the block b must be of the form 〈 i | null | ~v 〉, i.e.,
its adopter pointer must be null. Second, every instrumented
heap fragment must be closed under adopter edges. That is,
if R maps ` to X 〈 i | p | ~v 〉, then the adopter pointer p
must be either null or in the domain of R. In other words,
a resource R cannot exhibit a dangling adopter pointer. The
functions ? and ·̂ preserve these two properties: so, resources,
thus restricted, still form a monotonic separation algebra.

By imposing these restrictions, we promise to never split
the heap in a way that would place an adopter and its adoptee
in distinct heap fragments. This is exploited to justify that “if
we own a block, then we own all of its adoptees too”. This
idea plays a key role in the proof of subject reduction for take.

B. Parameterizing the judgements with a resource

The judgements of figures 5, 6, and 7 are parameterized
with a resource R . A judgement about a program depends
upon the view of the heap that is granted to this program.
The interpretation of permissions (figure 6) is closely related
to the interpretation of assertions in separation logic: a heap
fragment R justifies an assertion P . The function ? is used in
CUT, ATOMIC, and STAR. The function ·̂ is used in FUNCTION.

C. Rules for type-checking memory locations

The rules BLOCK and DYNAMIC in figure 5 assign types to
memory locations. They define the meaning of the structural
type “m i {~T} adopts U” and of the type dynamic.

BLOCK is quite complex, because a structural type represents
at the same time the ownership of: (a) a block, (b) the values
stored in the block’s fields, and (c) the block’s adoptees. This
rule can be read as follows. With respect to R, the address `
admits the type “m i {~T} adopts U” if:

1) the heap fragment R can be split into R1 and R2, where:
2) R1 justifies that the values ~v have types ~T ;
3) there exists a list ~̀′ of addresses such that6, in the heap

fragment R2, the adoptees of ` are exactly the members
of ~̀′, and if we set their adopter fields to null, yielding
an updated heap fragment R′2, then R′2 can be split into
R′21 and R′22, where:

4) R′21 justifies that every member of ~̀′ has type U ;
5) R′22 maps the address ` to an instrumented block which

has mode m, tag i, no adopter, and fields ~v.
DYNAMIC states that all valid memory locations (and only

them) have type dynamic. This explains why, when we have a
permission of the form x@ dynamic, it is safe to treat x as a
pointer and read its adopter field.

D. Statement of soundness

We write R ` t : T as a short-hand for R;∅; empty ` t : T .
Let us furthermore write “h and R agree” when the heap h
and the instrumented heap R agree (in the obvious sense).

6We omit the definition of the predicate R2 ` ` adopts ~̀′ a R′
2. The text

that follows is an informal paraphrase of it.

Definition VI.1 The configuration h / t is well-typed, and we
write ` h / t, if and only if there exist a resource R and a
type T such that h and R agree and R ` t : T holds. �

The well-typedness of configurations is an invariant
(“subject reduction”) and rules out stuck configurations
(“progress”). Thus, well-typed programs do not go wrong:

Theorem VI.2 (Type soundness) Let t be a well-typed
source program: that is, assume void ` t : T , where void
is the empty resource. Then, the configuration ∅ / t either
eventually reduces to an answer or diverges. �

A more detailed outline appears in an appendix (§C).
Theorem VI.2 offers an end-to-end guarantee. It does not

state how this guarantee is obtained, and does not state that
“the ownership policy is properly enforced”. Nevertheless, this
is a strong result: if the ownership policy could somehow be
subverted, then, because the owner of an object can change
its type, type soundness would be compromised as well. If
desired, subject reduction (lemma A.11) offers a more detailed
statement. It guarantees that, at every time, there exists a type
derivation, which has tree structure and can be viewed as the
“ownership hierarchy” of the program under execution.

VII. RELATED WORK

The literature offers a wealth of type systems and program
logics that are intended to help write correct programs in the
presence of mutable, heap-allocated state. We review a few of
them and contrast them with Mezzo.

Ownership Types [6] and its descendants restrict aliasing.
Every object is owned by at most one other object, and an
“owner-as-dominator” principle is enforced: every path from
a root to an object x must go through x’s owner. Universe
Types [7] impose a slightly different principle, “owner-as-
modifier”. Arbitrary paths are allowed to exist in the heap, but
only those that go through x’s owner can be used to modify x.
This approach is meant to support program verification, as it
allows the owner to impose an object invariant. Permission
systems [8]–[10] annotate pointers not with owners, but with
permissions. The permission carried by a pointer tells how
this pointer may be used (e.g. for reading and writing, only
for reading, or not at all) and how other pointers to the same
object (if they exist) might be used by others.

The systems mentioned so far are refinements (restrictions)
of a traditional type discipline. Separation logic [2] departs
from this approach and obeys a principle that we dub “owner-
as-asserter”. (In O’Hearn’s words, “ownership is in the eye of
the asserter” [11].) Objects are described by logical assertions.
To assert is to own: if one knows that “x is a linked list”, then
one may read and write the cells that form this list, and nobody
else may. Whereas the previously mentioned systems combine
structural descriptions (i.e., types) with owner or permission
annotations, separation logic assertions are at once structural
descriptions and claims of ownership.

Mezzo obeys “owner-as-asserter”: permissions describe and
claim ownership. The key motivation for this decision is to



allow strong updates: an object’s description can be changed
by its owner. This enables gradual initialization, memory re-
use, and typestate tracking. In the future, piggybacking logical
assertions on permissions could facilitate program verification.

Mezzo differs from separation logic in that it distinguishes
between immutable and mutable data, supports first-class
functions and algebraic data types, and can be type-checked
without producing proof obligations.

A strength of Ownership Types is their ability to describe a
container that does not own its (mutable) elements. In Mezzo,
this is expressed by assigning a weak type (namely, dynamic) to
an element while it is in the container and recovering stronger
information via a dynamic check (a take instruction) when it is
taken out of the container. Although this approach may seem
inelegant, we believe that it is imposed by our strong interpre-
tation of “owner-as-asserter”: since the container does not own
its elements, it cannot record any information about them, not
even their type. dynamic is the most precise information that
one can hope for about an object that one does not own.

On the other hand, a situation that Mezzo can easily describe
is the action of taking an element of type T out of a container;
processing it, thereby changing its type to U ; then inserting
it into another container. This can be expressed using con-
tainers that own their elements, and does not require dynamic.
Ownership or Universe Types cannot express uniqueness or
ownership transfer.

The use of singleton types to keep track of equations, and
the idea that pointers can be copied, whereas permissions
are affine, are inspired by Alias Types [12]. Linear [13] and
affine [14] type systems support strong updates and often
view permissions (or “capabilities”) as ordinary values, which
hopefully the compiler can erase. By offering an explicit
distinction between permissions and values, we guarantee that
permissions are erased, and we are able to make the flow of
permissions mostly implicit. Through algebraic data types and
through the type constructor T | P , we retain the ability to tie
a permission to a value, if desired.

Adoption & abandon are inspired by adoption & focus [15]
and by nesting [9]. The common purpose of all three mech-
anisms is to let one permission govern a group of objects.
Adoption [15] and nesting are irreversible and static, whereas
Mezzo’s adoption can be undone, which makes it much more
flexible, but incurs a runtime cost and introduces potential
runtime failures. Because nesting is forever, nesting facts [9],
which witness an adopter-adoptee pair, are duplicable. Some-
what analogously, Mezzo’s dynamic is duplicable, but cannot
mention the identity of the adopter or the type of the adoptee,
as neither is stable. The identity of the adopter can be
ascertained at runtime, and determines the type of the adoptee.

Regions [5], [12], [13], [15] have been widely used as a
technical device that allows a type to indirectly refer to a value
or set of values. In Mezzo, types refer to values directly. This
simplifies the meta-theory and the programmer’s view.

We are considering extending Mezzo with support for
shared-memory concurrency. Many abstractions (threads,
locks, channels, tasks, etc.) can be axiomatized in a way that

ensures that well-typed programs are data-race-free. Fractional
permissions [9] could in principle be added as well. In Mezzo,
a mutable block can be made immutable forever; fractional
permissions would allow reversing this transition.

Gordon et al. [10] ensure data-race freedom in a simple
extension of C#. They qualify types with permissions in the
set immutable, isolated, writable, or readable. The first two roughly
correspond to our immutable and mutable modes, whereas the
last two have no Mezzo analogue. Shared (writable) references
allow legacy sequential code to be considered well-typed.
A salient feature is the absence of an alias analysis, which
simplifies the system considerably. This comes at a cost in
expressiveness: mutable global variables, as well as shared
objects protected by locks, are disallowed.

From the author’s previous work [5], we borrow some ideas,
such as the notion of a monotonic separation algebra. The
absence of regions and of an instrumented semantics represent
significant technical simplifications. The notion of hidden state
is currently absent in Mezzo; one way of introducing it would
be to extend Mezzo with dynamically-allocated locks.
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K ` v : value

K ` v : prog

K(x) = κ

K ` x : κ

K, x : value ` t : prog

K ` λx.t : value

K ` v : value K ` t : prog

K ` v t : prog
K ` ` : value

K ` ~v : seq value

K ` new i {~v} : prog

K ` v : value

K ` v.f : prog

K ` v1 : value K ` v2 : value

K ` v1.f ← v2 : prog

K ` v : value K ` ~t : seq prog

K ` switch (v)~t : prog

K ` v : value

K ` tag of v ← i : prog

K ` v1 : value K ` v2 : value

K ` give v1 to v2 : prog

K ` v1 : value K ` v2 : value

K ` take v1 from v2 : prog
K ` fail : prog

K ` T : type K ` U : type

K ` T → U : type

K ` ~T : seq type K ` U : type

K ` m i {~T} adopts U : type
K ` dynamic : type K ` τ : type

K ` v : value

K ` =v : type

K ` T : type K ` P : perm

K ` T | P : type

K ` ⊥ : type
K ` v : value K ` T : type

K ` v@T : perm
K ` empty : perm

K ` P : perm K ` Q : perm

K ` P ∗ Q : perm

K,x : value ` P : perm

K ` ∃x.P : perm

K ` ε : seqκ
K ` t : κ K ` ~t : seqκ

K ` t;~t : seqκ

Fig. 10. Kinding rules

APPENDIX

A. Well-kindedness

The well-kindedness judgement K ` t : κ is inductively
defined by the rules in figure 10. The first rule states that value
is a subset of prog. The remaining rules are syntax-directed.

B. Derived rules and encoding of the simply-typed λ-calculus

None of the typing rules (§V) resemble the “axiom” rule of
simply-typed λ-calculus, which states that x has type T under
the assumption that x has type T . Indeed, SINGLETON (figure 5)
only allows proving that x has type =x. Fortunately, an axiom
rule, presented in figure 11, can be derived from SINGLETON,
SUBRIGHT, and the permission subsumption axioms.

We have defined “let x = u in t” as sugar for “(λx.t) u”.
Using APPLICATION and FRAME, among others, it is possible
to derive a typing rule for this construct (figure 11). The
rule states that part of the available permissions (namely P )
are used to prove that the term t has type T , while the rest
(namely Q), together with the new hypothesis x@T , are used
to type-check the term u.

VALUE
K ` v : value K ` T : type

void;K; v@T ` v : T

LETFRAME
K ` T : type K ` Q : perm

void;K;P ` t : T void;K,x : value;Q ∗ (x@T ) ` u : U

void;K;P ∗ Q ` let x = t in u : U

Fig. 11. Derived typing rules for variables and sequencing

Using these rules, it is easy to encode the simply-typed λ-
calculus in Core Mezzo. The encoding of terms is as follows:

JxK = x

Jλx.tK = λx.JtK
Jt uK = let x = JtK in x JuK

Because the left-hand side of an application must be a value,
an explicit sequencing construct is introduced.

The types of the simply-typed λ-calculus are given by the
grammar T ::= () | T → T . The encoding JT K of a type T is
T itself. A type environment E of the simply-typed λ-calculus
is encoded in two distinct ways: as a kind environment, JEK,
and as a permission, LEM. They are defined as follows:

Jx1 : T1, . . . , xn : TnK = x1 : value, . . . , xn : value

Lx1 : T1, . . . , xn : TnM = x1 @T1 ∗ . . . ∗ xn @Tn

This encoding is type-preserving:

Lemma A.1 (Encoding) If E ` t : T holds in the simply-
typed λ-calculus, then void; JEK; LEM ` JtK : JT K holds. �

C. Proof of type soundness

We outline the main steps along the way that leads to the
final statement of type soundness (theorem VI.2).

The following two lemmas are syntactic “sanity checks”.
We formulate them about the typing judgement; there are
analogous statements about the other judgements.

The typing judgement is “reasonable” in the sense that it
holds only of well-formed programs and (if seeded with a
well-formed precondition) produces a well-formed type:

Lemma A.2 (Reason) If R;K;P ` t : T holds, then:

1) K ` t : prog holds;
2) K ` P : perm implies K ` T : type. �

The typing judgement is preserved by every kind-preserving
substitution. This holds at arbitrary kinds: value variables may
be replaced with values, type variables may be replaced with
types, and so on. When one replaces a variable of kind value
with a value v, this value is not required to be well-typed. This
is in contrast with the substitution lemma of (say) simply-typed
λ-calculus.



Lemma A.3 (Substitution) Well-typedness is preserved by
the substitution of something of kind κ for a variable of kind κ.

R;K,x : κ;P ` t : T K ` u : κ

R;K; [u/x]P ` [u/x]t : [u/x]T �

A technical detail was glossed over earlier (§VI-A). The
function ? was presented as a partial function of two resources
to a resource: it is undefined when its arguments represent two
incompatible views of the heap. In reality, ? is a total function,
which produces an “inconsistent” result when its arguments
are incompatible. A new predicate, written “R is consistent”,
identifies the consistent resources.

The following three lemmas are established independently
of one another. Again, we formulate them about the typing
judgement; there are analogous statements about the other
judgements.

The actions of an active principal cannot cause an inactive
principal to become ill-typed. In other words, well-typedness
is stable in the face of legal interference, as defined by the
relation C (§VI-A).

Lemma A.4 (Stability) Well-typedness is preserved under an
evolution of the resources along the relation C.

R1;K;P ` t : T R1 is consistent R1 C R2

R2;K;P ` t : T �

The system is affine: extra resources do not hurt.

Lemma A.5 (Affinity) Well-typedness is preserved under the
addition of unnecessary resources.

R1;K;P ` t : T R1 ? R2 is consistent
R1 ? R2;K;P ` t : T �

The syntactic notion of duplicable types and permissions, as
defined in figure 3, is sound with respect to the semantic notion
of a duplicable resource. The statement uses the function ·̂,
which maps a resource to its duplicable fragment (§VI-A). In
this and the following statements, we write R 
 v : T as an
abbreviation for R;∅ 
 v@T .

Lemma A.6 (Duplication) If a canonical type derivation, at
a duplicable type, is justified by some resource R, then it is
also justified by the duplicable fragment of R.

R 
 v : T R is consistent T is duplicable

R̂ 
 v : T �

We now prove a classification lemma and a decomposition
lemma for each type constructor. They extract information out
of a canonical typing judgement for a closed value. By way
of example, we present the classification and decomposition
lemmas for functions; there are analogous lemmas for each of
the other type constructors.

Lemma A.7 (Classification) Among the closed values, only
λ-abstractions admit a function type.

R 
 v : T → U

∃xt, v = λx.t �

Lemma A.8 (Decomposition) If a closed function λx.t has
type T → U , then t has type U under the precondition x@T .

R 
 λx.t : T → U R is consistent

R̂;∅, x : value;x@T ` t : U �

This decomposition lemma is slightly stronger than one
might expect in view of the typing rule FUNCTION (figure 5).
Indeed, the lemma does not mention the fact that the function
body could require a duplicable permission P . We are able
to establish this strong statement because the permission P , if
there is one, can be hidden by appeal to lemma A.6 and by
application of the typing rule CUT.

We now come to two key lemmas about subsumption.
Permission subsumption, as axiomatized in figures 8 and 9,

is sound with respect to the semantic notion of entailment that
naturally arises out of the interpretation of permissions. All of
the previous lemmas (except Stability, which is used only in
the proof of Subject reduction) are used in this proof.

Lemma A.9 (soundness of subsumption) The subsumption
of permissions is sound:

∅ ` P ≤ Q R;∅ 
 P R is consistent
R;∅ 
 Q

and so is the subsumption of types:

∅ ` T ≤ U R 
 v : T R is consistent
R 
 v : U �

This implies that an arbitrary derivation can be turned into
a canonical one, i.e., one that does not use the subsumption
rules SUBLEFT and SUBRIGHT, except possibly under λ:

Lemma A.10 (Canonicalization) If a closed value v admits
the type T , then there is a canonical derivation of this fact.

R ` v : T R is consistent ∅ ` v : value

R 
 v : T �

Thus equipped, we climb the two usual cliffs of the syntactic
approach to type soundness: subject reduction and progress.

Lemma A.11 (Subject reduction) The well-typedness of
configurations is preserved by reduction.

c1 −→ c2 ` c1
` c2 �

Lemma A.12 (Progress) A well-typed configuration either is
an answer or is able to take a reduction step.

` c
c is not stuck �

Theorem VI.2 is a direct corollary of the last two lemmas.
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