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Jan 2009 Imperative Programming in C 14h tutorial L3, ENSIIE Resp. Julien

Forest
Falls 2008 Imperative Programming introduction to C 21h tutorial L3, ENSIIE

Resp. Renaud Rioboo
Falls 2008 Compilation 14h tutorial M1, ENSIIE Resp. Sandrine Blazy
Falls 2008 Functional Programming Introduction to OCaml 13h tutorial L3, EN-

SIIE Resp. Catherine Dubois
April 2007 Church λ−calculus 2h lecture, Mechanized Proofs M1 Computer Science,

Université paris 7 Resp. Alexandre Miquel
April 2007 Lists in Coq 2h tutorial,Mechanized Proofs M1 Computer Science, Université

Paris 7 Resp. Alexandre Miquel

Scienti�c Visit

26/04 to 16/05/08 Visiting PhD Fellows training Site at BRICS Aarhus, Danemark
Inviting by Olivier Danvy

Language

Native French and Fluent English

Ph.D. subject

As part of formal veri�cation of critical software, preserving properties established on the source code
in the executable code seems to be crucial. To have this preservation, the compiler has to be veri�ed
itself. A compiler is formally veri�ed if it is joined with a proof of semantic preservation : the behavior of

the compiled code preserves the source code behavior, if the compilation succeeds.
The CompCert project (http ://compcert.inria.fr) investigates the formal veri�cation of realistic compilers
usable for critical embedded software. The project designs, develops and mechanically veri�es compilers
within the Coq Proof Assistant. By this method, a C compiler producing PowerPC assembly code has
already be developed and veri�ed. Using the extraction mechanism of Coq, the compiler is automatically
extracted into OCaml code, which is compiled by the Objective Caml system. Actually, the production of
the executable compiler uses (or used to use) two unveri�ed processes : the extraction mechanism and the
Objective Caml compiler. In fact, this is true for any speci�ed development in the Coq Proof Assistant
when the target is to obtain an executable.
My thesis deals with the design, development and mechanized veri�cation, in the Coq Proof Assistant,
of a compiler for the purely functional fragment of ML, which is the language of extracted from Coq
extraction. Concretely, a front-end from miniML (λ-calculus, let, letrec, pattern-matching) to Cminor
has been developed. Cminor is a low-level C-like language, that is the �rst intermediate language of the
CompCert back-end.

Such as the source language is expressive, the compiler is realistic. Classical functional language com-
pilation optimizations are done : uncurrying (the same optimization as in OCaml), uniform data structure
representation (as numbering constructor and closure conversion) and an optimizing CPS translation. As
in modern compiler for high-level languages, the miniML compiler can interact with a memory manager.
This interaction has been mechanized veri�ed.


