
Zaynah DARGAYE
85, rue Emile Bollaert

75019, Paris

Phone : 33 6 64 29 39 46
Email : zaynah.dargaye@inria.fr

Website : gallium.inria.fr/∼dargaye/

Date of birth 08/17/1980
Citizenship French

Education

2008�2009 ATER teaching assistant projet Cedric-CPR, at ENSIIE (French engineering
school)

2005� Ph. D. candidate in Computer Science Mechanized veri�cation of func-
tional language optimizing compilation (supervisor :Xavier Leroy projet
Gallium, INRIA Rocquencourt (funding :regional Ile de France)

Education

2004�2005 Master of Computer Science research, MPRI grade B Paris 7 University
2003�2004 M1 in Computer Science grade B Paris 7 University
2002�2003 Licence(3) in Computer Sciences grade B Paris 7 University
2000�2002 Deug MIAS(L2) grade B Paris 7 University

Publications and developments

2007 Mechanized Veri�cation of CPS transformation ,LPAR'07 Logic for Pro-
gramming Arti�cial Intelligence and Reasoning with X. Leroy LNCS 4790,
pages 211-225. Springer, 2007.

2007 Décurry�cation certifée , JFLA'07 Journées francophones des langages ap-
plicatifs (only in French), pages 119-133.

2006 Formal veri�cation of a C compiler front-end , FM'06 Formal Methods
with S. Blazy and X. Leroy. LNCS 4085, pages 460-475. Springer, 2006.

2004 Hyperlog Software , http ://membres.lycos.fr/hyperlog/



Teaching

Jan-Feb 2009 Formal speci�cation 6h tutorial M1, ENSIIE Resp. Sandrine Blazy
Jan 2009 Imperative Programming in C 14h tutorial L3, ENSIIE Resp. Julien

Forest
Falls 2008 Imperative Programming introduction to C 21h tutorial L3, ENSIIE

Resp. Renaud Rioboo
Falls 2008 Compilation 14h tutorial M1, ENSIIE Resp. Sandrine Blazy
Falls 2008 Functional Programming Introduction to OCaml 13h tutorial L3, EN-

SIIE Resp. Catherine Dubois
April 2007 Church λ−calculus 2h lecture, Mechanized Proofs M1 Computer Science,

Université paris 7 Resp. Alexandre Miquel
April 2007 Lists in Coq 2h tutorial,Mechanized Proofs M1 Computer Science, Université

Paris 7 Resp. Alexandre Miquel

Scienti�c Visit

26/04 to 16/05/08 Visiting PhD Fellows training Site at BRICS Aarhus, Danemark
Inviting by Olivier Danvy

Language

Native French and Fluent English

Ph.D. subject

As part of formal veri�cation of critical software, preserving properties established on the source code
in the executable code seems to be crucial. To have this preservation, the compiler has to be veri�ed
itself. A compiler is formally veri�ed if it is joined with a proof of semantic preservation : the behavior of

the compiled code preserves the source code behavior, if the compilation succeeds.
The CompCert project (http ://compcert.inria.fr) investigates the formal veri�cation of realistic compilers
usable for critical embedded software. The project designs, develops and mechanically veri�es compilers
within the Coq Proof Assistant. By this method, a C compiler producing PowerPC assembly code has
already be developed and veri�ed. Using the extraction mechanism of Coq, the compiler is automatically
extracted into OCaml code, which is compiled by the Objective Caml system. Actually, the production of
the executable compiler uses (or used to use) two unveri�ed processes : the extraction mechanism and the
Objective Caml compiler. In fact, this is true for any speci�ed development in the Coq Proof Assistant
when the target is to obtain an executable.
My thesis deals with the design, development and mechanized veri�cation, in the Coq Proof Assistant,
of a compiler for the purely functional fragment of ML, which is the language of extracted from Coq
extraction. Concretely, a front-end from miniML (λ-calculus, let, letrec, pattern-matching) to Cminor
has been developed. Cminor is a low-level C-like language, that is the �rst intermediate language of the
CompCert back-end.

Such as the source language is expressive, the compiler is realistic. Classical functional language com-
pilation optimizations are done : uncurrying (the same optimization as in OCaml), uniform data structure
representation (as numbering constructor and closure conversion) and an optimizing CPS translation. As
in modern compiler for high-level languages, the miniML compiler can interact with a memory manager.
This interaction has been mechanized veri�ed.


